TY - JOUR
T1 - A crayfish chitosan-based bioactive film to treat vaginal infections
T2 - a sustainable approach
AU - Conde, Alexandra
AU - Borges, Sandra
AU - Baptista-Silva, Sara
AU - Veloso, Telma
AU - Pereira, Joana L.
AU - Ventura, Sónia P. M.
AU - Pintado, Manuela M. E.
N1 - Publisher Copyright:
© 2024
PY - 2024/10
Y1 - 2024/10
N2 - Polymicrobial communities are seen to be a sign of health, but they can turn detrimental when an excess of pathogenic species leads to recurring vaginal infections. This microbiological imbalance may decrease women's fertility, increasing also the risk of infection by Human Papillomavirus (HPV) and/or other sexually transmitted infections (STIs). There is a worldwide need for smart/sustainable solutions to tackle these types of infections. Hereupon, we investigated, as a potential solution, the use of crayfish chitosan-based membrane as a mucoadhesive, antimicrobial, biocompatible and biodegradable material. Chitosan was chemically extracted with a process yield of ca. 63 % and a degree of deacetylation of ca. 65 %. Further chitosan was characterized by FTIR, DSC, XRD and zeta potential. Antimicrobial and antioxidant activities were tested by microbicide concentration and ABTS methods. The extracted chitosan was confirmed to be antioxidant and antimicrobial against Escherichia coli, Candida albicans, Staphylococcus aureus (methicillin resistant and susceptible strains). Vaginal films using chitosan extracted from crayfish shells were produced by solvent casting, and the biological profile was tested in simulated vaginal fluid as a proof of concept. The main data showed that the vaginal films prepared were active against several microorganisms responsible for vaginal infections, demonstrating their potential in the field.
AB - Polymicrobial communities are seen to be a sign of health, but they can turn detrimental when an excess of pathogenic species leads to recurring vaginal infections. This microbiological imbalance may decrease women's fertility, increasing also the risk of infection by Human Papillomavirus (HPV) and/or other sexually transmitted infections (STIs). There is a worldwide need for smart/sustainable solutions to tackle these types of infections. Hereupon, we investigated, as a potential solution, the use of crayfish chitosan-based membrane as a mucoadhesive, antimicrobial, biocompatible and biodegradable material. Chitosan was chemically extracted with a process yield of ca. 63 % and a degree of deacetylation of ca. 65 %. Further chitosan was characterized by FTIR, DSC, XRD and zeta potential. Antimicrobial and antioxidant activities were tested by microbicide concentration and ABTS methods. The extracted chitosan was confirmed to be antioxidant and antimicrobial against Escherichia coli, Candida albicans, Staphylococcus aureus (methicillin resistant and susceptible strains). Vaginal films using chitosan extracted from crayfish shells were produced by solvent casting, and the biological profile was tested in simulated vaginal fluid as a proof of concept. The main data showed that the vaginal films prepared were active against several microorganisms responsible for vaginal infections, demonstrating their potential in the field.
KW - Biological properties
KW - Chitosan membranes
KW - Vaginal infections
UR - http://www.scopus.com/inward/record.url?scp=85200826432&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2024.134460
DO - 10.1016/j.ijbiomac.2024.134460
M3 - Article
C2 - 39102915
AN - SCOPUS:85200826432
SN - 0141-8130
VL - 277
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
M1 - 134460
ER -