Aerosol assisted chemical vapour deposition of hydroxyapatite-embedded titanium dioxide composite thin films

C. Piccirillo*, C. J. Denis, R. C. Pullar, R. Binions, I. P. Parkin, J. A. Darr, P. M. L. Castro

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

43 Citations (Scopus)
65 Downloads

Abstract

This work describes the first Aerosol Assisted Chemical Vapour Deposition (AACVD) synthesis of photocatalytic titanium dioxide thin films embedded with synthetic hydroxyapatite, [Ca10(PO4)(OH)2], nanoparticles. The hydroxyapatite nanoparticles were prepared using a low temperature continuous hydrothermal flow synthesis method; analysis of the hydroxyapatite powder showed that it was phase pure and that the as-prepared material was made up of nano-needles. The nanoparticles were then embedded into TiO2 coatings using the AACVD technique by suspending them in a solution of the titania precursor (titanium tetra-isopropoxide). Results showed that the hydroxyapatite, although present in very low concentrations in the coatings (not detectable by XRD or Raman spectroscopy), heavily affected their morphology, depending on their concentration in the precursor solution. Tests of the photocatalytic activity of the composite films showed that the inclusion of the hydroxyapatite led to an increase in methylene blue photodegradation (up to 50% higher) and that the materials were photostable. This study shows that TiO2 coatings embedded with hydroxyapatite nanoparticles have potential as highly efficient photocatalysts.

Original languageEnglish
Pages (from-to)45-53
Number of pages9
JournalJournal of Photochemistry and Photobiology A: Chemistry
Volume332
DOIs
Publication statusPublished - 1 Jan 2017

Keywords

  • Chemical vapour deposition
  • Hydroxyapatite
  • Photocatalysis
  • Titanium dioxide

Fingerprint

Dive into the research topics of 'Aerosol assisted chemical vapour deposition of hydroxyapatite-embedded titanium dioxide composite thin films'. Together they form a unique fingerprint.

Cite this