Antimicrobial efficacy of building material based on ZnO/palygorskite against Gram-negative and Gram-positive bacteria

Frederico R. G. V. Rosendo, Lucas I. F. Pinto, Idglan S. de Lima, Pollyana Trigueiro, Luzia M.de C. Honório, Maria Gardênnia Fonseca, Edson C. Silva-Filho, Alessandra B. Ribeiro, Marcelo B. Furtini, Josy A. Osajima*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)

Abstract

This study investigated ZnO nanoparticles immobilized in palygorskite clay mineral (Pal) that acted as an inorganic antimicrobial agent in a commercial mortar aiming to control microorganisms and improve safety and stability for building applications. ZnO/Pal nanocomposites were obtained by sol-gel methods at pH 7 and 11 and were calcined at 250 °C and 400 °C to evaluate different synthesis parameters. The mortar/ZnO/Pal composite was obtained using 5% (by weight) ZnO/Pal hybrid mixed with a commercial mortar. The results show that pH and calcination temperature influenced the properties of ZnO/Pal. ZnO was observed in the ZnO/Pal samples during the wurtzite phase by analyzing the XRD patterns. FTIR spectra illustrated the interactions between ZnO nanoparticles and the fibrous clay mineral. TG-DTG analysis showed the thermal events of Pal before and after zinc incorporation. Scanning electron microscopy (SEM) evaluated ZnO morphology as spherical in shape and dispersed on the fibers of the clay minerals, which presented needle-like morphology. ZnO/Palygorskite showed a possible antibacterial effect when used in mortar formulation. The mortar/ZnO/Pal composites were effective against Escherichia coli and Staphylococcus aureus bacteria when tested by the direct contact method in darkness and in visible light and could be an alternative antimicrobial material for building surfaces.
Original languageEnglish
Article number105499
Number of pages9
JournalApplied Clay Science
Volume188
DOIs
Publication statusPublished - Apr 2020

Keywords

  • Antibacterial activity
  • Mortar
  • Palygorskite
  • Sol-gel technique
  • ZnO

Fingerprint

Dive into the research topics of 'Antimicrobial efficacy of building material based on ZnO/palygorskite against Gram-negative and Gram-positive bacteria'. Together they form a unique fingerprint.

Cite this