TY - JOUR
T1 - Audience effects in territorial defense of male cichlid fish are associated with differential patterns of activation of the brain social decision-making network
AU - Roleira, António
AU - Oliveira, Gonçalo A.
AU - Lopes, João S.
AU - Oliveira, Rui F.
N1 - Funding Information:
The authors wish to thank Olinda Almeida for her help in the behavioral analyses, Ana Sofia Félix for her help with the hormone assays, and Julia Pinho and Sara Cardoso for their help with qPCR assays. This study was funded by a grant from Fundação para a Ciência e a Tecnologia (FCT) awarded to RO (EXCL/BIA-ANM/0549/2012), which also supported JL and GO post-doc fellowships.
Publisher Copyright:
© 2017 Roleira, Oliveira, Lopes and Oliveira.
PY - 2017/5/31
Y1 - 2017/5/31
N2 - Animals communicate by exchanging signals frequently in the proximity of other conspecifics that may detect and intercept signals not directed to them. There is evidence that the presence of these bystanders modulates the signaling behavior of interacting individuals, a phenomenon that has been named audience effect. Research on the audience effect has predominantly focused on its function rather than on its proximate mechanisms. Here, we have investigated the physiological and neuromolecular correlates of the audience effect in a cichlid fish (Mozambique tilapia, Oreochromis mossambicus). A male was exposed to a territorial intrusion in the presence or absence of a female audience. Results showed that the presence of the female audience increased territorial defense, but elicited a lower androgen and cortisol response to the territorial intrusion. Furthermore, analysis of the expression of immediate early genes, used as markers of neuronal activity, in brain areas belonging to the social decision-making network (SDMN) revealed different patterns of network activity and connectivity across the different social contexts (i.e., audience × intrusion). Overall, these results suggest that socially driven plasticity in the expression of territorial behavior is accommodated in the central nervous system by rapid changes in functional connectivity between nodes of relevant networks (SDMN) rather than by localized changes of activity in specific brain nuclei.
AB - Animals communicate by exchanging signals frequently in the proximity of other conspecifics that may detect and intercept signals not directed to them. There is evidence that the presence of these bystanders modulates the signaling behavior of interacting individuals, a phenomenon that has been named audience effect. Research on the audience effect has predominantly focused on its function rather than on its proximate mechanisms. Here, we have investigated the physiological and neuromolecular correlates of the audience effect in a cichlid fish (Mozambique tilapia, Oreochromis mossambicus). A male was exposed to a territorial intrusion in the presence or absence of a female audience. Results showed that the presence of the female audience increased territorial defense, but elicited a lower androgen and cortisol response to the territorial intrusion. Furthermore, analysis of the expression of immediate early genes, used as markers of neuronal activity, in brain areas belonging to the social decision-making network (SDMN) revealed different patterns of network activity and connectivity across the different social contexts (i.e., audience × intrusion). Overall, these results suggest that socially driven plasticity in the expression of territorial behavior is accommodated in the central nervous system by rapid changes in functional connectivity between nodes of relevant networks (SDMN) rather than by localized changes of activity in specific brain nuclei.
KW - Aggression
KW - Androgens
KW - Audience effects
KW - Cortisol
KW - Immediate early genes
KW - Social decision-making network
UR - http://www.scopus.com/inward/record.url?scp=85027850463&partnerID=8YFLogxK
U2 - 10.3389/fnbeh.2017.00105
DO - 10.3389/fnbeh.2017.00105
M3 - Article
C2 - 28620286
AN - SCOPUS:85027850463
SN - 1662-5153
VL - 11
JO - Frontiers in Behavioral Neuroscience
JF - Frontiers in Behavioral Neuroscience
M1 - 105
ER -