TY - JOUR
T1 - Biodiversity and biotechnological properties of lactic acid bacteria isolated from traditional Moroccan sourdoughs
AU - Boujamaai, Mounir El
AU - Mannani, Nysrine
AU - Aloui, Amina
AU - Errachidi, Faouzi
AU - Ben Salah-Abbès, Jalila
AU - Riba, Amar
AU - Abbès, Samir
AU - Rocha, João Miguel
AU - Bartkiene, Elena
AU - Brabet, Catherine
AU - Zinedine, Abdellah
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive licence to Springer Nature B.V.
PY - 2023/12
Y1 - 2023/12
N2 - The present study aimed at characterizing lactic acid bacteria (LAB) strains isolated from traditional sourdoughs collected in different regions of Morocco. Isolated strains were firstly identified using Gram staining and catalase reaction test. Presumptive LAB strains were then checked for various phenotypical properties including growth at 45 °C, resistance to NaCl, enzyme production, acidification capacity, diacetyl and exopolysaccharide (EPS) production, and antifungal activity. Finally, selected LAB strains were identified using 16S rDNA sequencing. Results showed that 32.1% of the isolates were thermophilic (45 °C) and 83.9% were resistant to NaCl (6.5%). Moreover, 51.7 and 37.5% were able to produce diacetyl and EPS, respectively. Regarding enzyme production, 55.3 and 7.1% of the isolates showed lipolytic and proteolytic activities, respectively. Low pH values (3.37–3.76) were obtained after 24 h of incubation of LAB strains in de Man, Rogosa and Sharpe (MRS) broth. Antifungal activity test against Aspergillus flavus, Aspergillus niger and Penicillium spp. showed an inhibition rate up to 50%. Bacterial DNA sequencing showed that LAB isolates belong to seven species, chiefly Levilactobacillus brevis, Lentilactobacillus parabuchneri, Lactiplantibacillus plantarum, Pediococcus pentosaceus, Enterococcus hirae, Bifidobacterium pseudocatenulatum, and Companilactobacillus paralimentarius. These findings, for the first time in Moroccan sourdoughs, indicate that the isolated LAB strains have good multifunctional properties and could be suitable as good starters for sourdough bread production under controlled conditions.
AB - The present study aimed at characterizing lactic acid bacteria (LAB) strains isolated from traditional sourdoughs collected in different regions of Morocco. Isolated strains were firstly identified using Gram staining and catalase reaction test. Presumptive LAB strains were then checked for various phenotypical properties including growth at 45 °C, resistance to NaCl, enzyme production, acidification capacity, diacetyl and exopolysaccharide (EPS) production, and antifungal activity. Finally, selected LAB strains were identified using 16S rDNA sequencing. Results showed that 32.1% of the isolates were thermophilic (45 °C) and 83.9% were resistant to NaCl (6.5%). Moreover, 51.7 and 37.5% were able to produce diacetyl and EPS, respectively. Regarding enzyme production, 55.3 and 7.1% of the isolates showed lipolytic and proteolytic activities, respectively. Low pH values (3.37–3.76) were obtained after 24 h of incubation of LAB strains in de Man, Rogosa and Sharpe (MRS) broth. Antifungal activity test against Aspergillus flavus, Aspergillus niger and Penicillium spp. showed an inhibition rate up to 50%. Bacterial DNA sequencing showed that LAB isolates belong to seven species, chiefly Levilactobacillus brevis, Lentilactobacillus parabuchneri, Lactiplantibacillus plantarum, Pediococcus pentosaceus, Enterococcus hirae, Bifidobacterium pseudocatenulatum, and Companilactobacillus paralimentarius. These findings, for the first time in Moroccan sourdoughs, indicate that the isolated LAB strains have good multifunctional properties and could be suitable as good starters for sourdough bread production under controlled conditions.
KW - Antifungal activity
KW - Biotechnological properties
KW - Lactic acid bacteria
KW - Morocco
KW - Sourdough
UR - http://www.scopus.com/inward/record.url?scp=85173605270&partnerID=8YFLogxK
U2 - 10.1007/s11274-023-03784-0
DO - 10.1007/s11274-023-03784-0
M3 - Article
C2 - 37798570
AN - SCOPUS:85173605270
SN - 0959-3993
VL - 39
JO - World Journal of Microbiology and Biotechnology
JF - World Journal of Microbiology and Biotechnology
IS - 12
M1 - 331
ER -