TY - JOUR
T1 - Chitosan nanoparticles loaded with 2,5-dihydroxybenzoic acid and protocatechuic acid
T2 - properties and digestion
AU - Madureira, Ana Raquel
AU - Pereira, Adriana
AU - Pintado, Manuela
PY - 2016/4/1
Y1 - 2016/4/1
N2 - Research efforts on the production of chitosan nanoparticles (NP) as delivery systems of bioactive compounds such as polyphenols have been made along the last decade. Nevertheless, the effect of the phenolic compound structure in the production of these NP was never evaluated so far. Low and high molecular weights chitosan (LMWC and HMWC) NP loaded with the phenolic acids, protocatechuic (PA) and 2,5-dihydroxybenzoic acids (2,5-DHBA) were produced by ionic gelation. Antioxidant activities were determined by ORAC assay. Physical and thermal properties were evaluated by dynamic light scattering (DLS) and differential scanning calorimetry (DSC), respectively. Stability and release of phenolic acids during simulation of gastrointestinal tract (GIT) conditions were also assessed. Nanoparticles sizes ranged from 300 to 600 nm and maintained stable during storage at 4 °C during 30 d. Antioxidant activities of the phenolic acids decreased when loaded in the NP. High molecular weight chitosan NP adsorbed higher energy and melted at lower temperatures than LMWC NP. Nanoparticles produced with HMWC released higher phenolic acids % at GIT simulated conditions and with slight increases in their sizes. The most proper systems for delivery of PA and 2,5-DHBA were found to be LMWC and HMWC NP, respectively. These NP could be used to as functional food ingredients or as models for production of phenolic acids-rich extracts NP for future incorporation in food matrices.
AB - Research efforts on the production of chitosan nanoparticles (NP) as delivery systems of bioactive compounds such as polyphenols have been made along the last decade. Nevertheless, the effect of the phenolic compound structure in the production of these NP was never evaluated so far. Low and high molecular weights chitosan (LMWC and HMWC) NP loaded with the phenolic acids, protocatechuic (PA) and 2,5-dihydroxybenzoic acids (2,5-DHBA) were produced by ionic gelation. Antioxidant activities were determined by ORAC assay. Physical and thermal properties were evaluated by dynamic light scattering (DLS) and differential scanning calorimetry (DSC), respectively. Stability and release of phenolic acids during simulation of gastrointestinal tract (GIT) conditions were also assessed. Nanoparticles sizes ranged from 300 to 600 nm and maintained stable during storage at 4 °C during 30 d. Antioxidant activities of the phenolic acids decreased when loaded in the NP. High molecular weight chitosan NP adsorbed higher energy and melted at lower temperatures than LMWC NP. Nanoparticles produced with HMWC released higher phenolic acids % at GIT simulated conditions and with slight increases in their sizes. The most proper systems for delivery of PA and 2,5-DHBA were found to be LMWC and HMWC NP, respectively. These NP could be used to as functional food ingredients or as models for production of phenolic acids-rich extracts NP for future incorporation in food matrices.
KW - Chitosan
KW - Gastrointestinal tract
KW - Nanoparticles
KW - Phenolic compounds
UR - http://www.scopus.com/inward/record.url?scp=84951895602&partnerID=8YFLogxK
U2 - 10.1016/j.jfoodeng.2015.11.007
DO - 10.1016/j.jfoodeng.2015.11.007
M3 - Article
AN - SCOPUS:84951895602
SN - 0260-8774
VL - 174
SP - 8
EP - 14
JO - Journal of Food Engineering
JF - Journal of Food Engineering
ER -