TY - JOUR
T1 - Competing species leave many potential niches unfilled
AU - Ashby, Ben
AU - Watkins, Eleanor
AU - Lourenço, José
AU - Gupta, Sunetra
AU - Foster, Kevin R.
N1 - Funding Information:
We thank G. Barabás, T. Gross, R. Iritani, S. Nee and R. Noble for helpful comments on the manuscript. B.A. acknowledges funding from the Natural Environment Research Council (NE/N014979/1). S.G., E.W. and J.L. received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 268904-DIVERSITY. K.R.F. is funded by European Research Council grant 242670 and a Calleva Research Centre for Evolution and Human Science (Magdalen College, Oxford) grant.
Publisher Copyright:
© 2017 The Author(s).
PY - 2017/10/1
Y1 - 2017/10/1
N2 - A cornerstone of biology is that coexisting species evolve to occupy separate ecological niches. Classical theory predicts that interspecific competition should lead to all potential niches being occupied, yet observational data suggest that many niches are unfilled. Here we show that theory can be reconciled with observational data by reconceptualizing competition in the Hutchinsonian niche space to distinguish between substitutable and non-substitutable resources. When resources are substitutable (for example, seeds of different size), the components of competition along the niche axes combine multiplicatively, leading to a densely packed niche space. However, when resources are non-substitutable (such as seeds and nest sites), we show that the components of competition combine additively. Disruptive selection therefore limits niche overlap between non-substitutable niche axes, leaving most potential niches unfilled. A key corollary is that increasing the number of niche axes may greatly increase the number of potential niches but does not necessarily increase diversity. We discuss observational data that are consistent with our model and consider implications for systems with invasive species. Our work reinforces the power of competition to drive major ecological patterns: while niche space informs on species that might exist, only a small and potentially arbitrary subset will coexist in sympatry.
AB - A cornerstone of biology is that coexisting species evolve to occupy separate ecological niches. Classical theory predicts that interspecific competition should lead to all potential niches being occupied, yet observational data suggest that many niches are unfilled. Here we show that theory can be reconciled with observational data by reconceptualizing competition in the Hutchinsonian niche space to distinguish between substitutable and non-substitutable resources. When resources are substitutable (for example, seeds of different size), the components of competition along the niche axes combine multiplicatively, leading to a densely packed niche space. However, when resources are non-substitutable (such as seeds and nest sites), we show that the components of competition combine additively. Disruptive selection therefore limits niche overlap between non-substitutable niche axes, leaving most potential niches unfilled. A key corollary is that increasing the number of niche axes may greatly increase the number of potential niches but does not necessarily increase diversity. We discuss observational data that are consistent with our model and consider implications for systems with invasive species. Our work reinforces the power of competition to drive major ecological patterns: while niche space informs on species that might exist, only a small and potentially arbitrary subset will coexist in sympatry.
UR - http://www.scopus.com/inward/record.url?scp=85031896700&partnerID=8YFLogxK
U2 - 10.1038/s41559-017-0295-3
DO - 10.1038/s41559-017-0295-3
M3 - Article
C2 - 28983517
AN - SCOPUS:85031896700
SN - 2397-334X
VL - 1
SP - 1495
EP - 1501
JO - Nature Ecology and Evolution
JF - Nature Ecology and Evolution
IS - 10
ER -