Abstract
The balance equations pertaining to the modelling of a CSTR performing an enzyme-catalyzed reaction in the presence of enzyme deactivation are developed. Combination of heuristic correlations for the size-dependent cost of equipment and the purification-dependent cost of recovery of product with the mass balances was used as a basis for the development of expressions relating a (suitably defined) dimensionless economic parameter with the optimal outlet substrate concentration under the assumption that overall production costs per unit mass of product were to be minimized. The situation of Michaelis-Menten kinetics for the substrate depletion and first order kinetics for the deactivation of enzyme (considering that the free enzyme and the enzyme in the enzyme/substrate complex deactivate at different rates) was explored, and plots for several values of the parameters germane to the analysis are included.
Original language | English |
---|---|
Pages (from-to) | 51-55 |
Number of pages | 5 |
Journal | Bioprocess Engineering |
Volume | 13 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 1995 |