TY - JOUR
T1 - Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer’s disease
AU - EU EOD Consortium
AU - De Roeck, Arne
AU - Van den Bossche, Tobi
AU - van der Zee, Julie
AU - Verheijen, Jan
AU - De Coster, Wouter
AU - Van Dongen, Jasper
AU - Dillen, Lubina
AU - Baradaran-Heravi, Yalda
AU - Heeman, Bavo
AU - Sanchez-Valle, Raquel
AU - Lladó, Albert
AU - Nacmias, Benedetta
AU - Sorbi, Sandro
AU - Gelpi, Ellen
AU - Grau-Rivera, Oriol
AU - Gómez-Tortosa, Estrella
AU - Pastor, Pau
AU - Ortega-Cubero, Sara
AU - Pastor, Maria A.
AU - Graff, Caroline
AU - Thonberg, Håkan
AU - Benussi, Luisa
AU - Ghidoni, Roberta
AU - Binetti, Giuliano
AU - de Mendonça, Alexandre
AU - Martins, Madalena
AU - Borroni, Barbara
AU - Padovani, Alessandro
AU - Almeida, Maria Rosário
AU - Santana, Isabel
AU - Diehl-Schmid, Janine
AU - Alexopoulos, Panagiotis
AU - Clarimon, Jordi
AU - Lleó, Alberto
AU - Fortea, Juan
AU - Tsolaki, Magda
AU - Koutroumani, Maria
AU - Matěj, Radoslav
AU - Rohan, Zdenek
AU - De Deyn, Peter
AU - Engelborghs, Sebastiaan
AU - Cras, Patrick
AU - Van Broeckhoven, Christine
AU - Sleegers, Kristel
AU - Bessi, Valentina
AU - Bagnoli, Silvia
AU - do Couto, Frederico Simões
AU - Verdelho, Ana
AU - Fratiglioni, Laura
AU - Rohan, Zdenek
N1 - Funding Information:
The sponsors of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The research was funded in part by the European Commission Seventh Framework Programme for research, technological development, and demonstration under grant agreement 305299 (AgedBrainSYSBIO), the Belgian Science Policy Office Interuniversity Attraction Poles program, the Alzheimer Research Foundation (SAO-FRA), the Flemish government-initiated Flanders Impulse Program on Networks for Dementia Research (VIND), the Flemish government-initiated Methusalem Excellence Program, the Research Foundation Flanders (FWO), the VIB Technology Fund, the University of Antwerp Research Fund, Belgium; Generalitat de Catalunya (2014SGR-0235), Instituto de Salud Carlos III (PI12/01311), Spanish Ministry of Economy and Competitiveness ISCIII (PI14/00282), European Regional Development Fund, the Italian Ministry of Health (Ricerca Corrente and RF-2010-2319722), and the Fondazione Cassa di Risparmio di Pistoia e Pescia grant (2014.0365). A.D.R. receives a Ph.D. fellowship of FWO (Fonds Wetenschappelijk Onderzoek). W.D.C. receives a Ph.D. fellowship of VLAIO Hermesfonds. We thank Steven Vermeulen, Kristien De Ruyck, Elise Cuyvers, Rita Cacace, Yannick Vermeiren, and the personnel of the VIB Neuromics Support Facility and Antwerp biobank, Antwerp, Belgium for technical assistance. European Early Onset Dementia (EU EOD) consortium side author list: The following members of the EU EOD consortium have contributed to the sampling, clinical and pathological phenotyping of the patients that were included in the EU EOD cohort: Valentina Bessi, Silvia Bagnoli (Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy); Frederico Sim?es do Couto, Ana Verdelho (Faculty of Medicine, University of Lisbon, Lisbon, Portugal); Laura Fratiglioni (Karolinska Institutet, Department of Neurobiology, Care Sciences and Society [NVS], Aging Research Center and Center for Alzheimer Research); Alessandro Padovani (Neurology Unit, University of Brescia, Brescia, Italy); Zdenek Rohan (Center of Clinical Neurosciences, Department of Neurology, First Medical Faculty, Charles University and Department of Pathology and Molecular Medicine, Thomayer Hospital in Prague, Czech Republic); Cristina Razquin, Elena Lorenzo, Elena Iglesias (Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research, University of Navarra, Pamplona, Spain); Manuel Seijo-Mart?nez (Department of Neurology, Hospital do Saln?s, Pontevedra, Spain); Ramon Rene, Jordi Gascon, Jaume Campdelacreu (Department of Neurology, Hospital de Bellvitge, Barcelona, Spain), Rafael Blesa (Department of Neurology, Memory Unit, Hospital de Sant Pau, Barcelona, Spain). European Early Onset Dementia (EU EOD) consortium side author list is given in acknowledgements. All participants and/or their legal guardian gave written informed consent for participation in clinical and genetic studies. Autopsied patients or their legal guardian gave written informed consent for inclusion in neuropathological studies. Clinical study protocol and the informed consent forms for patient ascertainment were approved by the ethic committee of the respective hospitals at the cohort sampling sites. The genetic study protocols and informed consent forms were approved by the Ethics Committees of the University of Antwerp and the University Hospital of Antwerp, Belgium.
Funding Information:
The sponsors of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The research was funded in part by the European Commission Seventh Framework Programme for research, technological development, and demonstration under grant agreement 305299 (AgedBrainSYSBIO), the Belgian Science Policy Office Interuniversity Attraction Poles program, the Alzheimer Research Foundation (SAO-FRA), the Flemish government-initiated Flanders Impulse Program on Networks for Dementia Research (VIND), the Flemish government-initiated Methusalem Excellence Program, the Research Foundation Flanders (FWO), the VIB Technology Fund, the University of Antwerp Research Fund, Belgium; Generalitat de Catalunya (2014SGR-0235), Instituto de Salud Carlos III (PI12/01311), Spanish Ministry of Economy and Competitiveness ISCIII (PI14/00282), European Regional Development Fund, the Italian Ministry of Health (Ricerca Corrente and RF-2010-2319722), and the Fondazione Cassa di Risparmio di Pistoia e Pescia grant (2014.0365). A.D.R. receives a Ph.D. fellowship of FWO (Fonds Wetenschappelijk Onderzoek). W.D.C. receives a Ph.D. fellowship of VLAIO Hermesfonds. We thank Steven Vermeulen, Kristien De Ruyck, Elise Cuyvers, Rita Cacace, Yannick Vermeiren, and the personnel of the VIB Neuromics Support Facility and Antwerp biobank, Antwerp, Belgium for technical assistance.
Publisher Copyright:
© 2017, The Author(s).
PY - 2017/9/1
Y1 - 2017/9/1
N2 - Premature termination codon (PTC) mutations in the ATP-Binding Cassette, Sub-Family A, Member 7 gene (ABCA7) have recently been identified as intermediate-to-high penetrant risk factor for late-onset Alzheimer’s disease (LOAD). High variability, however, is observed in downstream ABCA7 mRNA and protein expression, disease penetrance, and onset age, indicative of unknown modifying factors. Here, we investigated the prevalence and disease penetrance of ABCA7 PTC mutations in a large early onset AD (EOAD)—control cohort, and examined the effect on transcript level with comprehensive third-generation long-read sequencing. We characterized the ABCA7 coding sequence with next-generation sequencing in 928 EOAD patients and 980 matched control individuals. With MetaSKAT rare variant association analysis, we observed a fivefold enrichment (p = 0.0004) of PTC mutations in EOAD patients (3%) versus controls (0.6%). Ten novel PTC mutations were only observed in patients, and PTC mutation carriers in general had an increased familial AD load. In addition, we observed nominal risk reducing trends for three common coding variants. Seven PTC mutations were further analyzed using targeted long-read cDNA sequencing on an Oxford Nanopore MinION platform. PTC-containing transcripts for each investigated PTC mutation were observed at varying proportion (5–41% of the total read count), implying incomplete nonsense-mediated mRNA decay (NMD). Furthermore, we distinguished and phased several previously unknown alternative splicing events (up to 30% of transcripts). In conjunction with PTC mutations, several of these novel ABCA7 isoforms have the potential to rescue deleterious PTC effects. In conclusion, ABCA7 PTC mutations play a substantial role in EOAD, warranting genetic screening of ABCA7 in genetically unexplained patients. Long-read cDNA sequencing revealed both varying degrees of NMD and transcript-modifying events, which may influence ABCA7 dosage, disease severity, and may create opportunities for therapeutic interventions in AD.
AB - Premature termination codon (PTC) mutations in the ATP-Binding Cassette, Sub-Family A, Member 7 gene (ABCA7) have recently been identified as intermediate-to-high penetrant risk factor for late-onset Alzheimer’s disease (LOAD). High variability, however, is observed in downstream ABCA7 mRNA and protein expression, disease penetrance, and onset age, indicative of unknown modifying factors. Here, we investigated the prevalence and disease penetrance of ABCA7 PTC mutations in a large early onset AD (EOAD)—control cohort, and examined the effect on transcript level with comprehensive third-generation long-read sequencing. We characterized the ABCA7 coding sequence with next-generation sequencing in 928 EOAD patients and 980 matched control individuals. With MetaSKAT rare variant association analysis, we observed a fivefold enrichment (p = 0.0004) of PTC mutations in EOAD patients (3%) versus controls (0.6%). Ten novel PTC mutations were only observed in patients, and PTC mutation carriers in general had an increased familial AD load. In addition, we observed nominal risk reducing trends for three common coding variants. Seven PTC mutations were further analyzed using targeted long-read cDNA sequencing on an Oxford Nanopore MinION platform. PTC-containing transcripts for each investigated PTC mutation were observed at varying proportion (5–41% of the total read count), implying incomplete nonsense-mediated mRNA decay (NMD). Furthermore, we distinguished and phased several previously unknown alternative splicing events (up to 30% of transcripts). In conjunction with PTC mutations, several of these novel ABCA7 isoforms have the potential to rescue deleterious PTC effects. In conclusion, ABCA7 PTC mutations play a substantial role in EOAD, warranting genetic screening of ABCA7 in genetically unexplained patients. Long-read cDNA sequencing revealed both varying degrees of NMD and transcript-modifying events, which may influence ABCA7 dosage, disease severity, and may create opportunities for therapeutic interventions in AD.
KW - ATP-Binding Cassette
KW - Early Onset Alzheimer’s disease
KW - Loss-of-function
KW - Member 7 (ABCA7)
KW - Modifier
KW - RNA sequencing
KW - Sub-Family A
KW - Third-generation long-read sequencing
UR - http://www.scopus.com/inward/record.url?scp=85018272631&partnerID=8YFLogxK
U2 - 10.1007/s00401-017-1714-x
DO - 10.1007/s00401-017-1714-x
M3 - Article
C2 - 28447221
AN - SCOPUS:85018272631
SN - 0001-6322
VL - 134
SP - 475
EP - 487
JO - Acta Neuropathologica
JF - Acta Neuropathologica
IS - 3
ER -