TY - JOUR
T1 - Effect of 1-carbaldehyde-3,4-dimethoxyxanthone on prostate and HPV-18 positive cervical cancer cell lines and on human THP-1 macrophages
AU - Medeiros, Rui
AU - Horta, Bruno
AU - Freitas-Silva, Joana
AU - Silva, Jani
AU - Dias, Francisca
AU - Sousa, Emília
AU - Pinto, Madalena
AU - Cerqueira, Fátima
N1 - Funding Information:
Funding: This work was sponsored from the national funds of FCT/MCTES—Foundation for Science and Technology I.P. from the Minister of Science, Technology, and Higher Education (PIDDAC) and European Regional Development Fund (ERDF) by the COMPETE—Programa Operacional Factores de Competitividade (POFC) under the Strategic Funding UID/Multi/04546/2019 and UIDP/04423/2020 (Group of Natural Products and Medicinal Chemistry CIIMAR) and project PTDC/MAR-BIO/4694/2014 (reference POCI-01-0145-FEDER-016790; Project 3599—Promover a Produção Científica e Desenvolvimento Tecnológico e a Constituição de Redes Temáticas (3599-PPCDT)) under the program PT2020 and the Research Center of the Portuguese Oncology Institute of Porto (project no. PI86-CI-IPOP-66-2019).
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/6/2
Y1 - 2021/6/2
N2 - Xanthone derivatives have shown promising antitumor properties, and 1-carbaldehyde-3,4-dimethoxyxanthone (1) has recently emerged as a potent tumor cell growth inhibitor. In this study, its effect was evaluated (MTT viability assay) against a new panel of cancer cells, namely cervical cancer (HeLa), androgen-sensitive (LNCaP) and androgen-independent (PC-3) prostate cancer, and nonsolid tumor derived cancer (Jurkat) cell lines. The effect of xanthone 1 on macrophage functions was also evaluated. The effect of xanthone 1-conditioned THP-1 human macrophage supernatants on the metabolic viability of cervical and prostate cancer cell lines was determined along with its interference with cytokine expression characteristic of M1 profile (IL-1 ≤ β; TNF-α) or M2 profile (IL-10; TGF-β) (PCR and ELISA). Nitric oxide (NO) production by murine RAW264.7 macrophages was quantified by Griess reaction. Xanthone 1 (20 µM) strongly inhibited the metabolic activity of the cell lines and was significantly more active against prostate cell lines compared to HeLa (p < 0.05). Jurkat was the cell most sensitive to the effect of xanthone 1. Compound 1-conditioned IL-4-stimulated THP-1 macrophage supernatants significantly (p < 0.05) inhibited the metabolic activity of HeLa, LNCaP, and PC-3. Xanthone 1 did not significantly affect the expression of cytokines by THP-1 macrophages. The inhibiting effect of compound 1 observed on the production of NO by RAW 264.7 macrophages was moderate. In conclusion, 1-carbaldehyde-3,4-dimethoxyxanthone (1) decreases the metabolic activity of cancer cells and seems to be able to modulate macrophage functions.
AB - Xanthone derivatives have shown promising antitumor properties, and 1-carbaldehyde-3,4-dimethoxyxanthone (1) has recently emerged as a potent tumor cell growth inhibitor. In this study, its effect was evaluated (MTT viability assay) against a new panel of cancer cells, namely cervical cancer (HeLa), androgen-sensitive (LNCaP) and androgen-independent (PC-3) prostate cancer, and nonsolid tumor derived cancer (Jurkat) cell lines. The effect of xanthone 1 on macrophage functions was also evaluated. The effect of xanthone 1-conditioned THP-1 human macrophage supernatants on the metabolic viability of cervical and prostate cancer cell lines was determined along with its interference with cytokine expression characteristic of M1 profile (IL-1 ≤ β; TNF-α) or M2 profile (IL-10; TGF-β) (PCR and ELISA). Nitric oxide (NO) production by murine RAW264.7 macrophages was quantified by Griess reaction. Xanthone 1 (20 µM) strongly inhibited the metabolic activity of the cell lines and was significantly more active against prostate cell lines compared to HeLa (p < 0.05). Jurkat was the cell most sensitive to the effect of xanthone 1. Compound 1-conditioned IL-4-stimulated THP-1 macrophage supernatants significantly (p < 0.05) inhibited the metabolic activity of HeLa, LNCaP, and PC-3. Xanthone 1 did not significantly affect the expression of cytokines by THP-1 macrophages. The inhibiting effect of compound 1 observed on the production of NO by RAW 264.7 macrophages was moderate. In conclusion, 1-carbaldehyde-3,4-dimethoxyxanthone (1) decreases the metabolic activity of cancer cells and seems to be able to modulate macrophage functions.
KW - 1-carbaldehyde-3,4-dimethoxyxanthone
KW - Antitumor
KW - Cervical cancer
KW - Prostate cancer
UR - http://www.scopus.com/inward/record.url?scp=85108885389&partnerID=8YFLogxK
U2 - 10.3390/molecules26123721
DO - 10.3390/molecules26123721
M3 - Article
C2 - 34207168
AN - SCOPUS:85108885389
SN - 1420-3049
VL - 26
JO - Molecules
JF - Molecules
IS - 12
M1 - 3721
ER -