TY - JOUR
T1 - Enhanced biocatalytic sustainability of laccase by immobilization on functionalized carbon nanotubes/polysulfone membranes
AU - Costa, João B.
AU - Lima, Maria J.
AU - Sampaio, Maria J.
AU - Neves, Márcia C.
AU - Faria, Joaquim L.
AU - Morales-Torres, Sergio
AU - Tavares, Ana P. M.
AU - Silva, Cláudia G.
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - Chemically functionalized multi-walled carbon nanotubes (CNTs) are used as carriers for laccase immobilization. In this work, CNTs were modified using different approaches with a combination of methods involving hydrothermal oxidation with nitric acid, treatment with 3-aminopropyltriethoxysilane, glutaraldehyde, N-ethyl-N-(3-(dimethylamino)-propyl) carbodiimide hydrochloride and N-hydroxysuccinimide. The enzyme immobilization efficiency and recovered activity were evaluated towards 2,2′-azino-bis(3-ethylbenzathiazoline-6-sulfonic acid) biocatalytic oxidation. The best compromise between immobilization efficiency and recovered activity was obtained using the CNTs functionalized with 0.3 M HNO 3, treated with N-ethyl-N-(3-(dimethylamino)propyl) carbodiimide hydrochloride and N-hydroxysuccinimide. This catalyst also showed the best thermal stability (at 50 and 60 °C). The bioconjugate based on this material was characterized by vibrational spectroscopies (FTIR and Raman) and by N 2 adsorption. The results from reutilization tests showed that laccase activity was kept above 65% of its initial value after five consecutive cycles of reuse. The biocatalytic performance of the immobilized enzyme was evaluated for the degradation of a mixture of phenolic compounds in water containing phenol, resorcinol, 4-methoxyphenol and 4-chlorophenol. As means of cost efficient to enzyme reutilization, laccase was immobilized over polysulfone membranes blended with the functionalized CNTs and studied in the degradation of 4-methoxyphenol.
AB - Chemically functionalized multi-walled carbon nanotubes (CNTs) are used as carriers for laccase immobilization. In this work, CNTs were modified using different approaches with a combination of methods involving hydrothermal oxidation with nitric acid, treatment with 3-aminopropyltriethoxysilane, glutaraldehyde, N-ethyl-N-(3-(dimethylamino)-propyl) carbodiimide hydrochloride and N-hydroxysuccinimide. The enzyme immobilization efficiency and recovered activity were evaluated towards 2,2′-azino-bis(3-ethylbenzathiazoline-6-sulfonic acid) biocatalytic oxidation. The best compromise between immobilization efficiency and recovered activity was obtained using the CNTs functionalized with 0.3 M HNO 3, treated with N-ethyl-N-(3-(dimethylamino)propyl) carbodiimide hydrochloride and N-hydroxysuccinimide. This catalyst also showed the best thermal stability (at 50 and 60 °C). The bioconjugate based on this material was characterized by vibrational spectroscopies (FTIR and Raman) and by N 2 adsorption. The results from reutilization tests showed that laccase activity was kept above 65% of its initial value after five consecutive cycles of reuse. The biocatalytic performance of the immobilized enzyme was evaluated for the degradation of a mixture of phenolic compounds in water containing phenol, resorcinol, 4-methoxyphenol and 4-chlorophenol. As means of cost efficient to enzyme reutilization, laccase was immobilized over polysulfone membranes blended with the functionalized CNTs and studied in the degradation of 4-methoxyphenol.
KW - CNTs-based polysulfone membranes
KW - Chemical functionalization
KW - Immobilization
KW - Laccase
KW - Multi-walled carbon nanotubes (CNTs)
KW - Wastewater treatment
UR - http://www.scopus.com/inward/record.url?scp=85052927066&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2018.08.178
DO - 10.1016/j.cej.2018.08.178
M3 - Article
SN - 1385-8947
VL - 355
SP - 974
EP - 985
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
ER -