Finite element analysis of peri-implant bone volume affected by stresses around Morse taper implants: effects of implant positioning to the bone crest

J. Paulo Macedo, Jorge Pereira, João Faria, Júlio C.M. Souza*, J. Luis Alves, José López-López, Bruno Henriques

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

Objectives: The purpose of the present study was to evaluate the distribution and magnitude of stresses through the bone tissue surrounding Morse taper dental implants at different positioning relative to the bone crest. Materials and Methods: A mandibular bone model was obtained from a computed tomography scan. A three-dimensional (3D) model of Morse taper implant-abutment systems placed at the bone crest (equicrestal) and 2 mm bellow the bone crest (subcrestal) were assessed by finite element analysis (FEA). FEA was carried out on axial and oblique (45°) loading at 150 N relatively to the central axis of the implant. The von Mises stresses were analysed considering magnitude and volume of affected peri-implant bone. Results: On vertical loading, maximum von Mises stresses were recorded at 6-7 MPa for trabecular bone while values ranging from 73 up to 118 MPa were recorded for cortical bone. On oblique loading at the equiquestral or subcrestal positioning, the maximum von Mises stresses ranged from 15 to 21 MPa for trabecular bone while values at 150 MPa were recorded for the cortical bone. On vertical loading, >99.9vol.% cortical bone volume was subjected to a maximum of 2 MPa while von Mises stress values at 15 MPa were recorded for trabecular bone. On oblique loading, >99.9vol.% trabecular bone volume was subjected to maximum stress values at 5 MPa, while von Mises stress values at 35 MPa were recorded for >99.4vol.% cortical bone. Conclusions: Bone volume-based stress analysis revealed that most of the bone volume (>99% by vol) was subjected to significantly lower stress values around Morse taper implants placed at equicrestal or subcrestal positioning. Such analysis is commentary to the ordinary biomechanical assessment of dental implants concerning the stress distribution through peri-implant sites.

Original languageEnglish
Pages (from-to)655-662
Number of pages8
JournalComputer Methods in Biomechanics and Biomedical Engineering
Volume21
Issue number12
DOIs
Publication statusPublished - 10 Sept 2018
Externally publishedYes

Keywords

  • Bone resorption
  • FEA
  • implant design
  • marginal bone loss
  • Morse taper implant
  • placement depth

Fingerprint

Dive into the research topics of 'Finite element analysis of peri-implant bone volume affected by stresses around Morse taper implants: effects of implant positioning to the bone crest'. Together they form a unique fingerprint.

Cite this