TY - JOUR
T1 - Gold-supported magnetically recyclable nanocatalysts
T2 - a sustainable solution for the reduction of 4-nitrophenol in water
AU - Rocha, Mariana
AU - Fernandes, Carlos
AU - Pereira, Clara
AU - Rebelo, Susana L. H.
AU - Pereira, Manuel F. R.
AU - Freire, Cristina
N1 - Publisher Copyright:
© The Royal Society of Chemistry 2015.
Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 2015
Y1 - 2015
N2 - In this work mesoporous silica-coated manganese(II) ferrite (MnFe2O4) magnetic nanoparticles functionalized with amine and thiol groups were prepared and used as supports for the in situ immobilization of gold nanoparticles (Au NPs). The resulting Au-supported magnetic nanocatalysts, denoted as Mn@SiO2-NH2@Au and Mn@SiO2-SH@Au, were tested in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP), at room temperature in water, in the presence of NaBH4 reducing agent. This organic compound is typically used in the production of pesticides and dyes and commonly found in the resulting wastewaters. The chemical, morphological, textural and magnetic properties of the nanosupports and resulting Au-supported nanocatalysts were characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, N2 adsorption-desorption isotherms at -196°C and SQUID magnetometry. The influence of the type of organosilane linker between the magnetic nanosupport and the Au NPs on the in situ immobilization of the Au NPs was evaluated: Mn@SiO2-NH2@Au presented lower Au loading than Mn@SiO2-SH@Au, but the anchored Au NPs showed a higher degree of crystallinity. The magnetic Au-supported nanocatalysts led to almost 100% reduction of 4-NP to 4-AP, monitored by UV-vis spectroscopy, with the reaction time depending on the type of nanocatalyst/linker: 12 and 17 min, for the amine- and thiol-based nanocatalysts respectively, what corresponded to pseudo first-order rate constants normalized for Au loading of K = 6117 mmol-1 min-1 and 827 mmol-1 min-1, respectively. Both catalysts could be efficiently recovered by magnetic separation and were highly stable upon reuse in four further cycles, preserving their catalytic performance with negligible Au leaching.
AB - In this work mesoporous silica-coated manganese(II) ferrite (MnFe2O4) magnetic nanoparticles functionalized with amine and thiol groups were prepared and used as supports for the in situ immobilization of gold nanoparticles (Au NPs). The resulting Au-supported magnetic nanocatalysts, denoted as Mn@SiO2-NH2@Au and Mn@SiO2-SH@Au, were tested in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP), at room temperature in water, in the presence of NaBH4 reducing agent. This organic compound is typically used in the production of pesticides and dyes and commonly found in the resulting wastewaters. The chemical, morphological, textural and magnetic properties of the nanosupports and resulting Au-supported nanocatalysts were characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, N2 adsorption-desorption isotherms at -196°C and SQUID magnetometry. The influence of the type of organosilane linker between the magnetic nanosupport and the Au NPs on the in situ immobilization of the Au NPs was evaluated: Mn@SiO2-NH2@Au presented lower Au loading than Mn@SiO2-SH@Au, but the anchored Au NPs showed a higher degree of crystallinity. The magnetic Au-supported nanocatalysts led to almost 100% reduction of 4-NP to 4-AP, monitored by UV-vis spectroscopy, with the reaction time depending on the type of nanocatalyst/linker: 12 and 17 min, for the amine- and thiol-based nanocatalysts respectively, what corresponded to pseudo first-order rate constants normalized for Au loading of K = 6117 mmol-1 min-1 and 827 mmol-1 min-1, respectively. Both catalysts could be efficiently recovered by magnetic separation and were highly stable upon reuse in four further cycles, preserving their catalytic performance with negligible Au leaching.
UR - http://www.scopus.com/inward/record.url?scp=84919772022&partnerID=8YFLogxK
U2 - 10.1039/c4ra15865b
DO - 10.1039/c4ra15865b
M3 - Article
AN - SCOPUS:84919772022
SN - 2046-2069
VL - 5
SP - 5131
EP - 5141
JO - RSC Advances
JF - RSC Advances
IS - 7
ER -