Heterogeneous photocatalysis using UVA-LEDs for the removal of antibiotics and antibiotic resistant bacteria from urban wastewater treatment plant effluents

Francesco Biancullo, Nuno F. F. Moreira, Ana R. Ribeiro, Célia M. Manaia, Joaquim L. Faria, Olga C. Nunes, Sérgio M. Castro-Silva, Adrián M. T. Silva*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

147 Citations (Scopus)
22 Downloads

Abstract

Secondary urban wastewater samples were spiked with azithromycin (AZT), trimethoprim (TMP), ofloxacin (OFL) and sulfamethoxazole (SMX) at 100 µg L−1 to investigate the efficiency of a TiO2-photocatalytic treatment using UVA-LEDs. Different operating parameters were studied, such as the irradiation conditions, catalyst load and the use of methanol as carrier solvent and radical scavenger. The most efficient conditions to treat spiked urban wastewater (4 LEDs symmetrically distributed and 1.00 g L−1 of catalyst) were also assessed on the removal of the antibiotics at real concentrations, as well as on the inactivation and regrowth of bacteria after 3-day storage (total and resistant heterotrophs, Escherichia coli and enterococci). Clindamycin (CLI) was targeted when SMX was not detected. One-hour treatment was enough to reduce the analysed antibiotics to values below the detection limits and to decrease the bacterial load by 2 log-units. Bacterial regrowth was observed for total heterotrophs, after the storage of photocatalytic treated wastewater, to values close to pre-treatment. However, the antibiotic resistance percentage of such stored wastewater was always similar or lower than that of secondary urban wastewater. Thus, the potential of this process as part of the tertiary treatment is demonstrated, but conditions must be adjusted to minimize microbial regrowth.

Original languageEnglish
Pages (from-to)304-313
Number of pages10
JournalChemical Engineering Journal
Volume367
DOIs
Publication statusPublished - 1 Jul 2019

Keywords

  • Antibiotic resistant bacteria
  • Bacterial regrowth
  • Disinfection
  • Light emitting diodes (LEDs)
  • Micropollutant
  • TiO-P25

Fingerprint

Dive into the research topics of 'Heterogeneous photocatalysis using UVA-LEDs for the removal of antibiotics and antibiotic resistant bacteria from urban wastewater treatment plant effluents'. Together they form a unique fingerprint.

Cite this