TY - JOUR
T1 - Iron and zinc in the embryo and endosperm of rice (oryza sativa l.) seeds in contrasting 2′-deoxymugineic acid/nicotianamine scenarios
AU - Díaz-Benito, Pablo
AU - Banakar, Raviraj
AU - Rodríguez-Menéndez, Sara
AU - Capell, Teresa
AU - Pereiro, Rosario
AU - Christou, Paul
AU - Abadía, Javier
AU - Fernández, Beatriz
AU - Álvarez-Fernández, Ana
N1 - Funding Information:
This work was supported by the grants of the Spanish Ministry of Science, Innovation and Universities (AGL2016-75226-R, BIO2014-54426-P and AGL2017-85377-R, all co-financed with FEDER), Aragón Government (Group A09_17R) and Generalitat de Catalunya (Grant 2017 SGR 828). PD-B was supported by a MINECO-FPI contract. RB was supported by a Ph.D. fellowship from the University of Lleida. SR-M was supported by a research contract from the Fundación Universidad de Oviedo (FUO-069-17). BF was supported by a MINECO research contract (RYC-2014-14985; “Ramón y Cajal Program”).
Publisher Copyright:
© 2018 Díaz-Benito, Banakar, Rodríguez-Menéndez, Capell, Pereiro, Christou, Abadía, Fernández and Álvarez-Fernández.
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2018/8/21
Y1 - 2018/8/21
N2 - Iron and Zn deficiencies are worldwide nutritional disorders that can be alleviated by increasing the metal concentration of rice (Oryza sativa L.) grains via bio-fortification approaches. The overproduction of the metal chelator nicotianamine (NA) is among the most effective ones, but it is still unclear whether this is due to the enrichment in NA itself and/or the concomitant enrichment in the NA derivative 2′-deoxymugineic acid (DMA). The endosperm is the most commonly consumed portion of the rice grain and mediates the transfer of nutrients from vegetative tissues to the metal rich embryo. The impact of contrasting levels of DMA and NA on the metal distribution in the embryo and endosperm of rice seeds has been assessed using wild-type rice and six different transgenic lines overexpressing nicotianamine synthase (OsNAS1) and/or barley nicotianamine amino transferase (HvNAATb). These transgenic lines outlined three different DMA/NA scenarios: (i) in a first scenario, an enhanced NA level (via overexpression of OsNAS1) would not be fully depleted because of a limited capacity to use NA for DMA synthesis (lack of -or low- expression of HvNAATb), and results in consistent enrichments in NA, DMA, Fe and Zn in the endosperm and NA, DMA and Fe in the embryo; (ii) in a second scenario, an enhanced NA level (via overexpression of OsNAS1) would be depleted by an enhanced capacity to use NA for DMA synthesis (via expression of HvNAATb), and results in enrichments only for DMA and Fe, both in the endosperm and embryo, and (iii) in a third scenario, the lack of sufficient NA replenishment would limit DMA synthesis, in spite of the enhanced capacity to use NA for this purpose (via expression of HvNAATb), and results in decreases in NA, variable changes in DMA and moderate decreases in Fe in the embryo and endosperm. Also, quantitative LA-ICP-MS metal map images of the embryo structures show that the first and second scenarios altered local distributions of Fe, and to a lesser extent of Zn. The roles of DMA/NA levels in the transport of Fe and Zn within the embryo are thoroughly discussed.
AB - Iron and Zn deficiencies are worldwide nutritional disorders that can be alleviated by increasing the metal concentration of rice (Oryza sativa L.) grains via bio-fortification approaches. The overproduction of the metal chelator nicotianamine (NA) is among the most effective ones, but it is still unclear whether this is due to the enrichment in NA itself and/or the concomitant enrichment in the NA derivative 2′-deoxymugineic acid (DMA). The endosperm is the most commonly consumed portion of the rice grain and mediates the transfer of nutrients from vegetative tissues to the metal rich embryo. The impact of contrasting levels of DMA and NA on the metal distribution in the embryo and endosperm of rice seeds has been assessed using wild-type rice and six different transgenic lines overexpressing nicotianamine synthase (OsNAS1) and/or barley nicotianamine amino transferase (HvNAATb). These transgenic lines outlined three different DMA/NA scenarios: (i) in a first scenario, an enhanced NA level (via overexpression of OsNAS1) would not be fully depleted because of a limited capacity to use NA for DMA synthesis (lack of -or low- expression of HvNAATb), and results in consistent enrichments in NA, DMA, Fe and Zn in the endosperm and NA, DMA and Fe in the embryo; (ii) in a second scenario, an enhanced NA level (via overexpression of OsNAS1) would be depleted by an enhanced capacity to use NA for DMA synthesis (via expression of HvNAATb), and results in enrichments only for DMA and Fe, both in the endosperm and embryo, and (iii) in a third scenario, the lack of sufficient NA replenishment would limit DMA synthesis, in spite of the enhanced capacity to use NA for this purpose (via expression of HvNAATb), and results in decreases in NA, variable changes in DMA and moderate decreases in Fe in the embryo and endosperm. Also, quantitative LA-ICP-MS metal map images of the embryo structures show that the first and second scenarios altered local distributions of Fe, and to a lesser extent of Zn. The roles of DMA/NA levels in the transport of Fe and Zn within the embryo are thoroughly discussed.
KW - Laser ablation
KW - Ligands
KW - Mass spectrometry
KW - Metals
KW - Rice
KW - Seeds
UR - http://www.scopus.com/inward/record.url?scp=85054511837&partnerID=8YFLogxK
U2 - 10.3389/fpls.2018.01190
DO - 10.3389/fpls.2018.01190
M3 - Article
C2 - 30186295
AN - SCOPUS:85054511837
SN - 1664-462X
VL - 9
JO - Frontiers in Plant Science
JF - Frontiers in Plant Science
M1 - 1190
ER -