Lettuce and fruits as a source of multidrug resistant Acinetobacter spp.

Ana Carvalheira, Joana Silva, Paula Teixeira*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)

Abstract

The role of ready-to-eat products as a reservoir of pathogenic species of Acinetobacter remains unclear. The objective of the present study was to evaluate the presence of Acinetobacter species in lettuces and fruits marketed in Portugal, and their susceptibility to antimicrobials. Acinetobacter spp. were isolated from 77.9% of the samples and these microorganisms were also found as endophytes (i.e. present within the plant tissue) in 12 of 20 samples of lettuces analysed. Among 253 isolates that were identified as belonging to this genus, 181 presented different PFGE profiles, representing different strains. Based on the analysis of the partial sequence of rpoB, 175 strains were identified as members of eighteen distinct species and the remaining six strains may represent five new candidate species since their rpoB sequence similarities with type strains were less than 95%. Acinetobacter calcoaceticus and Acinetobacter johnsonii were the most common species, both with the frequency of 26.5%; and 11% of the strains belong to the Acinetobacter baumannii group (i.e. A. baumannii, Acinetobacter pittii, Acinetobacter seifertii and Acinetobacter nosocomialis), which is most frequently associated with nosocomial infections. Overall, the strains were least susceptible to piperacillin (80.1%), piperacillin-tazobactam (64.1%), ceftazidime (43.1%), ciprofloxacin (16.6%), trimethoprim-sulfamethoxazole (14.9%), imipenem (14.4%) and colistin (13.3%). The most active antimicrobials were minocycline and tetracycline, with 0.6% and 3.9% of strains resistant, respectively. About 29.8% of the strains were classified as multidrug-resistant (MDR), 4.4% as extensively drug-resistant (XDR) and the prevalence of MDR strains within the A. baumannii group (25%) was similar to other species (30.4%). The presence of clinically important species as well as MDR strains in lettuces and fruits may be a threat to public health considering that they may transmit these pathogens to environments such as the community and hospital settings.

Original languageEnglish
Pages (from-to)119-125
Number of pages7
JournalFood Microbiology
Volume64
DOIs
Publication statusPublished - 1 Jun 2017

Keywords

  • A. baumannii group
  • Acinetobacter spp.
  • Antimicrobial resistance
  • Fruit
  • Lettuce
  • Multidrug-resistance
  • Ready-to-eat products

Fingerprint

Dive into the research topics of 'Lettuce and fruits as a source of multidrug resistant Acinetobacter spp.'. Together they form a unique fingerprint.

Cite this