Machine learning framework to identify individuals at risk of rapid progression of coronary atherosclerosis: from the paradigm registry
Donghee Han, Kranthi K. Kolli, Subhi J. Al’aref, Lohendran Baskaran, Alexander R. van Rosendael, Heidi Gransar, Daniele Andreini, Matthew J. Budoff, Filippo Cademartiri, Kavitha Chinnaiyan, Jung Hyun Choi, Edoardo Conte, Hugo Marques, Pedro de Araújo Gonçalves, Ilan Gottlieb, Martin Hadamitzky, Jonathon A. Leipsic, Erica Maffei, Gianluca Pontone, Gilbert L. RaffSangshoon Shin, Yong-Jin Kim, Byoung Kwon Lee, Eun Ju Chun, Ji Min Sung, Sang-Eun Lee, Renu Virmani, Habib Samady, Peter Stone, Jagat Narula, Daniel S. Berman, Jeroen J. Bax, Leslee J. Shaw, Fay Y. Lin, James K. Min, Hyuk-Jae Chang*
*Corresponding author for this work
Research output: Contribution to journal › Article › peer-review
60Citations
(Scopus)
Fingerprint
Dive into the research topics of 'Machine learning framework to identify individuals at risk of rapid progression of coronary atherosclerosis: from the paradigm registry'. Together they form a unique fingerprint.