Machine learning framework to identify individuals at risk of rapid progression of coronary atherosclerosis: from the paradigm registry

Donghee Han, Kranthi K. Kolli, Subhi J. Al’aref, Lohendran Baskaran, Alexander R. van Rosendael, Heidi Gransar, Daniele Andreini, Matthew J. Budoff, Filippo Cademartiri, Kavitha Chinnaiyan, Jung Hyun Choi, Edoardo Conte, Hugo Marques, Pedro de Araújo Gonçalves, Ilan Gottlieb, Martin Hadamitzky, Jonathon A. Leipsic, Erica Maffei, Gianluca Pontone, Gilbert L. RaffSangshoon Shin, Yong-Jin Kim, Byoung Kwon Lee, Eun Ju Chun, Ji Min Sung, Sang-Eun Lee, Renu Virmani, Habib Samady, Peter Stone, Jagat Narula, Daniel S. Berman, Jeroen J. Bax, Leslee J. Shaw, Fay Y. Lin, James K. Min, Hyuk-Jae Chang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

60 Citations (Scopus)

Fingerprint

Dive into the research topics of 'Machine learning framework to identify individuals at risk of rapid progression of coronary atherosclerosis: from the paradigm registry'. Together they form a unique fingerprint.

Medicine and Dentistry

Nursing and Health Professions