TY - JOUR
T1 - Magnesium incorporation into β-TCP reduced its in vivo resorption by decreasing parathormone production
AU - Yassuda, Debora H.
AU - Costa, Neusa F. M.
AU - Fernandes, Gustavo O.
AU - Alves, Gutemberg G.
AU - Granjeiro, José M.
AU - Soares, Glória de A.
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2013/7
Y1 - 2013/7
N2 - Beta-tricalcium phosphate (β-TCP), one of the most widely used bioresorbable materials for bone therapy, can be doped with magnesium ions, generating β-TCMP. The objectives of this work were to evaluate, on a murine dental alveolus grafting model, the biocompatibility of β-TCP and β-TMCP granules by histomorphometric analysis, as well as the impact on plasmatic levels of receptor activator of nuclear factor κB ligand (RANK-L), osteoprotegerin (OPG), osteocalcin, osteopontin, and parathormone (PTH) during bone repair, using Luminex multiplexing technology. After grafting for 42 days, β-TCP grafted group presented higher bioresorption and induced more newly formed bone than β-TCMP (p < 0.05). β-TCP grafting also induced higher plasmatic levels of RANK-L, compared to β-TCMP and control (blood clot) groups at 21st day (p < 0.05). PTH, which remained at low levels in control group, presented a time-dependent increase in grafted groups, attaining significantly higher levels with β-TCP by the 42nd day (p < 0.05). RANK-L/OPG ratio increased on β-TCP group and attained a peak on the 21st day. In conclusion, β-TCP granules were more bioresorbable and osteogenic than β-TCMP granules, and the resorption of both materials might have been affected by osteoclastogenesis modulated by changes in the plasmatic levels of PTH and RANK-L.
AB - Beta-tricalcium phosphate (β-TCP), one of the most widely used bioresorbable materials for bone therapy, can be doped with magnesium ions, generating β-TCMP. The objectives of this work were to evaluate, on a murine dental alveolus grafting model, the biocompatibility of β-TCP and β-TMCP granules by histomorphometric analysis, as well as the impact on plasmatic levels of receptor activator of nuclear factor κB ligand (RANK-L), osteoprotegerin (OPG), osteocalcin, osteopontin, and parathormone (PTH) during bone repair, using Luminex multiplexing technology. After grafting for 42 days, β-TCP grafted group presented higher bioresorption and induced more newly formed bone than β-TCMP (p < 0.05). β-TCP grafting also induced higher plasmatic levels of RANK-L, compared to β-TCMP and control (blood clot) groups at 21st day (p < 0.05). PTH, which remained at low levels in control group, presented a time-dependent increase in grafted groups, attaining significantly higher levels with β-TCP by the 42nd day (p < 0.05). RANK-L/OPG ratio increased on β-TCP group and attained a peak on the 21st day. In conclusion, β-TCP granules were more bioresorbable and osteogenic than β-TCMP granules, and the resorption of both materials might have been affected by osteoclastogenesis modulated by changes in the plasmatic levels of PTH and RANK-L.
KW - β-TCMP
KW - Beta-tricalcium phosphate
KW - Osteoprotegerin
KW - Parathormone
KW - Receptor activator of NF-kB ligand
UR - http://www.scopus.com/inward/record.url?scp=84878326463&partnerID=8YFLogxK
U2 - 10.1002/jbm.a.34502
DO - 10.1002/jbm.a.34502
M3 - Article
C2 - 23239606
AN - SCOPUS:84878326463
SN - 1549-3296
VL - 101 A
SP - 1986
EP - 1993
JO - Journal of Biomedical Materials Research - Part A
JF - Journal of Biomedical Materials Research - Part A
IS - 7
ER -