TY - JOUR
T1 - Modelling growth of, and removal of Zn and Hg by a wild microalgal consortium
AU - Monteiro, Cristina M.
AU - Brandão, Teresa R.S.
AU - Castro, Paula M.L.
AU - Malcata, F. Xavier
PY - 2012/4
Y1 - 2012/4
N2 - Microorganisms isolated from sites contaminated with heavy metals usually possess a higher removal capacity than strains from regular cultures. Heavy metal-containing soil samples from an industrial dumpsite in Northern Portugal were accordingly collected; following enrichment under metal stress, a consortium of wild microalgae was obtained. Their ability to grow in the presence of, and their capacity to recover heavy metals was comprehensively studied; the datasets thus generated were fitted to by a combined model of biomass growth and metal uptake, derived from first principles. After exposure to 15 and 25 mg/L Zn2+ for 6 days, the microalgal consortium reached similar, or higher cell density than the control; however, under 50 and 65 mg/L Zn2+, 71% to 84% inhibition was observed. Growth in the presence of Hg2+ was significantly inhibited, even at a concentration as low as 25 μg/L, and 90% inhibition was observed above 100 μg/L. The maximum amount of Zn2+ removed was 21.3 mg/L, upon exposure to 25 mg/L for 6 day, whereas the maximum removal of Hg2+ was 335 μg/L, upon 6 day in the presence of 350 μg/L. The aforementioned mechanistic model was built upon Monod assumptions (including heavy metal inhibition), coupled with Leudeking-Piret relationships between the rates of biomass growth and metal removal. The overall fits were good under all experimental conditions tested, thus conveying a useful tool for rational optimisation of microalga-mediated bioremediation.
AB - Microorganisms isolated from sites contaminated with heavy metals usually possess a higher removal capacity than strains from regular cultures. Heavy metal-containing soil samples from an industrial dumpsite in Northern Portugal were accordingly collected; following enrichment under metal stress, a consortium of wild microalgae was obtained. Their ability to grow in the presence of, and their capacity to recover heavy metals was comprehensively studied; the datasets thus generated were fitted to by a combined model of biomass growth and metal uptake, derived from first principles. After exposure to 15 and 25 mg/L Zn2+ for 6 days, the microalgal consortium reached similar, or higher cell density than the control; however, under 50 and 65 mg/L Zn2+, 71% to 84% inhibition was observed. Growth in the presence of Hg2+ was significantly inhibited, even at a concentration as low as 25 μg/L, and 90% inhibition was observed above 100 μg/L. The maximum amount of Zn2+ removed was 21.3 mg/L, upon exposure to 25 mg/L for 6 day, whereas the maximum removal of Hg2+ was 335 μg/L, upon 6 day in the presence of 350 μg/L. The aforementioned mechanistic model was built upon Monod assumptions (including heavy metal inhibition), coupled with Leudeking-Piret relationships between the rates of biomass growth and metal removal. The overall fits were good under all experimental conditions tested, thus conveying a useful tool for rational optimisation of microalga-mediated bioremediation.
KW - Bioremediation
KW - Heavy metals
KW - Leudeking-Piret model
KW - Metal uptake
KW - Monod model
KW - Toxicity
UR - http://www.scopus.com/inward/record.url?scp=84858439664&partnerID=8YFLogxK
U2 - 10.1007/s00253-011-3826-x
DO - 10.1007/s00253-011-3826-x
M3 - Article
C2 - 22234532
AN - SCOPUS:84858439664
SN - 0175-7598
VL - 94
SP - 91
EP - 100
JO - Applied Microbiology and Biotechnology
JF - Applied Microbiology and Biotechnology
IS - 1
ER -