TY - GEN
T1 - Motion capture visualization for mixed animated techniques
AU - Megre, Ricardo
AU - Kunz, Sahra
PY - 2020
Y1 - 2020
N2 - In this paper we discuss a novel multidisciplinary method for computer animation, using motion capture ( 'mocap') as reference, combining techniques from 2D and 3D animation, and digital sculpting. Our method develops a process to create animation based on mocap data, without being restricted by standard practices that depend on existing rigged 3D models, allowing for visual expression and improvisation while taking advantage of naturalistic motion and interaction within a 3D environment. The standard mocap methodology for creating animation consists of retargeting (transferring) the recorded data from actors and performers to existing digital characters, providing them with movement. The motion is then polished and tweaked by animators, until the final result is achieved. The character’s animation is the result of the captured performance and the original character design, but they are not created at the same time, as they are put together later on. Something similar happens with 3D computer animation: in order for animators to articulate characters into poses that are interpolated by the computer, a model of a character has to be built first. Here, the animators fully control the performance, but the design of the character pre-dates this process, and can only be modified within certain constraints. Mocap is bound by physics and naturalistic movements, animation can be exaggerated, weight and force have to be conveyed, rather than imposed. Both differ aesthetically but none of the approaches takes full advantage of 2D animation methods, where drawings dictate shape, form and motion at the same time. The characters here can be designed for the movement they perform in particular shots. This opens possibilities for a more experimental approach, where abstraction can exist. Our method combines the different disciplines and allows form to be created for each key pose, using digital sculpting tools for development and mocap as reference. Then, poses can be interpolated so the method is still interactive, allowing for experimentation. Using drawing as the starting point from the mocap data allows for greater understanding of the poses by studying the human figure in motion. This creates new opportunities for designing the animation, regarding shapes, forms and movement.
AB - In this paper we discuss a novel multidisciplinary method for computer animation, using motion capture ( 'mocap') as reference, combining techniques from 2D and 3D animation, and digital sculpting. Our method develops a process to create animation based on mocap data, without being restricted by standard practices that depend on existing rigged 3D models, allowing for visual expression and improvisation while taking advantage of naturalistic motion and interaction within a 3D environment. The standard mocap methodology for creating animation consists of retargeting (transferring) the recorded data from actors and performers to existing digital characters, providing them with movement. The motion is then polished and tweaked by animators, until the final result is achieved. The character’s animation is the result of the captured performance and the original character design, but they are not created at the same time, as they are put together later on. Something similar happens with 3D computer animation: in order for animators to articulate characters into poses that are interpolated by the computer, a model of a character has to be built first. Here, the animators fully control the performance, but the design of the character pre-dates this process, and can only be modified within certain constraints. Mocap is bound by physics and naturalistic movements, animation can be exaggerated, weight and force have to be conveyed, rather than imposed. Both differ aesthetically but none of the approaches takes full advantage of 2D animation methods, where drawings dictate shape, form and motion at the same time. The characters here can be designed for the movement they perform in particular shots. This opens possibilities for a more experimental approach, where abstraction can exist. Our method combines the different disciplines and allows form to be created for each key pose, using digital sculpting tools for development and mocap as reference. Then, poses can be interpolated so the method is still interactive, allowing for experimentation. Using drawing as the starting point from the mocap data allows for greater understanding of the poses by studying the human figure in motion. This creates new opportunities for designing the animation, regarding shapes, forms and movement.
KW - Motion capture
KW - Computer animation
KW - Digital sculpting
KW - Digital drawing
U2 - 10.14236/ewic/EVA2020.50
DO - 10.14236/ewic/EVA2020.50
M3 - Conference contribution
SP - 278
EP - 282
BT - Proceedings of EVA London 2020 (EVA 2020)
T2 - Electronic Visualisation and the Arts London 2020 Conference
Y2 - 16 November 2020 through 20 November 2020
ER -