TY - JOUR
T1 - Myocardial perfusion defects in hypertrophic cardiomyopathy mutation carriers
AU - Hughes, Rebecca K.
AU - Camaioni, Claudia
AU - Augusto, João B.
AU - Knott, Kristopher
AU - Quinn, Ellie
AU - Captur, Gabriella
AU - Seraphim, Andreas
AU - Joy, George
AU - Syrris, Petros
AU - Elliott, Perry M.
AU - Mohiddin, Saidi
AU - Kellman, Peter
AU - Xue, Hui
AU - Lopes, Luis Rocha
AU - Moon, James C.
N1 - Funding Information:
R.K.H. is supported by the British Heart Foundation (grant number FS/17/82/33222). G.C. is supported by the National Institute for Health Research Rare Diseases Translational Research Collaboration (NIHR RD‐TRC, #171603) and by NIHR University College London Hospitals Biomedical Research Centre. J.C.M., P.S., L.R.L., and P.M.E. are directly and indirectly supported by the University College London Hospitals NIHR Biomedical Research Centre and Biomedical Research Unit at Barts Hospital, respectively. Part of this work was supported by a Barts Charity Grant to L.R.L. L.R.L. is funded by a Medical Research Council Clinical Academic Research Partnership (CARP) award.
Publisher Copyright:
© 2021 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
PY - 2021
Y1 - 2021
N2 - BACKGROUND: Impaired myocardial blood flow (MBF) in the absence of epicardial coronary disease is a feature of hypertrophic cardiomyopathy (HCM). Although most evident in hypertrophied or scarred segments, reduced MBF can occur in apparently normal segments. We hypothesized that impaired MBF and myocardial perfusion reserve, quantified using perfusion mapping cardiac magnetic resonance, might occur in the absence of overt left ventricular hypertrophy (LVH) and late gadolinium enhancement, in mutation carriers without LVH criteria for HCM (genotype-positive, left ventricular hypertrophy-negative). METHODS AND RESULTS: A single center, case-control study investigated MBF and myocardial perfusion reserve (the ratio of MBF at stress:rest), along with other pre-phenotypic features of HCM. Individuals with genotype-positive, left ventricular hypertrophy-negative (n=50) with likely pathogenic/pathogenic variants and no evidence of LVH, and matched controls (n=28) underwent cardiac magnetic resonance. Cardiac magnetic resonance identified LVH-fulfilling criteria for HCM in 5 patients who were excluded. Individuals with genotype-positive, left ventricular hypertrophy-negative had longer indexed anterior mitral valve leaflet length (12.52±2.1 versus 11.55±1.6 mm/m2, P=0.03), lower left ventricular end-systolic volume (21.0±6.9 versus 26.7±6.2 mm/m2, P≤0.005) and higher left ventricular ejection fraction (71.9±5.5 versus 65.8±4.4%, P≤0.005). Maximum wall thickness was not significantly different (9.03±1.95 versus 8.37±1.2 mm, P=0.075), and no subject had significant late gadolinium enhancement (minor right ventricle‒insertion point late gadolinium enhancement only). Perfusion mapping demonstrated visual perfusion defects in 9 (20%) carriers versus 0 controls (P=0.011). These were almost all septal or near right ventricle insertion points. Globally, myocardial perfusion reserve was lower in carriers (2.77±0.83 versus 3.24±0.63, P=0.009), with a subendocardial:subepicardial myocardial perfusion reserve gradient (2.55±0.75 versus 3.2±0.65, P=<0.005; 3.01±0.96 versus 3.47±0.75, P=0.026) but equivalent MBF (2.75±0.82 versus 2.65±0.69 mL/g per min, P=0.826). CONCLUSIONS: Regional and global impaired myocardial perfusion can occur in HCM mutation carriers, in the absence of significant hypertrophy or scarring.
AB - BACKGROUND: Impaired myocardial blood flow (MBF) in the absence of epicardial coronary disease is a feature of hypertrophic cardiomyopathy (HCM). Although most evident in hypertrophied or scarred segments, reduced MBF can occur in apparently normal segments. We hypothesized that impaired MBF and myocardial perfusion reserve, quantified using perfusion mapping cardiac magnetic resonance, might occur in the absence of overt left ventricular hypertrophy (LVH) and late gadolinium enhancement, in mutation carriers without LVH criteria for HCM (genotype-positive, left ventricular hypertrophy-negative). METHODS AND RESULTS: A single center, case-control study investigated MBF and myocardial perfusion reserve (the ratio of MBF at stress:rest), along with other pre-phenotypic features of HCM. Individuals with genotype-positive, left ventricular hypertrophy-negative (n=50) with likely pathogenic/pathogenic variants and no evidence of LVH, and matched controls (n=28) underwent cardiac magnetic resonance. Cardiac magnetic resonance identified LVH-fulfilling criteria for HCM in 5 patients who were excluded. Individuals with genotype-positive, left ventricular hypertrophy-negative had longer indexed anterior mitral valve leaflet length (12.52±2.1 versus 11.55±1.6 mm/m2, P=0.03), lower left ventricular end-systolic volume (21.0±6.9 versus 26.7±6.2 mm/m2, P≤0.005) and higher left ventricular ejection fraction (71.9±5.5 versus 65.8±4.4%, P≤0.005). Maximum wall thickness was not significantly different (9.03±1.95 versus 8.37±1.2 mm, P=0.075), and no subject had significant late gadolinium enhancement (minor right ventricle‒insertion point late gadolinium enhancement only). Perfusion mapping demonstrated visual perfusion defects in 9 (20%) carriers versus 0 controls (P=0.011). These were almost all septal or near right ventricle insertion points. Globally, myocardial perfusion reserve was lower in carriers (2.77±0.83 versus 3.24±0.63, P=0.009), with a subendocardial:subepicardial myocardial perfusion reserve gradient (2.55±0.75 versus 3.2±0.65, P=<0.005; 3.01±0.96 versus 3.47±0.75, P=0.026) but equivalent MBF (2.75±0.82 versus 2.65±0.69 mL/g per min, P=0.826). CONCLUSIONS: Regional and global impaired myocardial perfusion can occur in HCM mutation carriers, in the absence of significant hypertrophy or scarring.
KW - Genetics
KW - Hypertrophic cardiomyopathy
KW - Quantitative perfusion mapping
KW - Sarcomere mutations carriers without hypertrophy
UR - http://www.scopus.com/inward/record.url?scp=85111077655&partnerID=8YFLogxK
U2 - 10.1161/JAHA.120.020227
DO - 10.1161/JAHA.120.020227
M3 - Article
C2 - 34310159
AN - SCOPUS:85111077655
SN - 2047-9980
VL - 10
JO - Journal of the American Heart Association
JF - Journal of the American Heart Association
IS - 15
M1 - e020227
ER -