Nanoencapsulation and bioaccessibility of polyphenols of aqueous extracts from Bauhinia forficata link

Bárbara Verônica Cardoso de Souza, Mariana de Morais Sousa, José Augusto Gasparotto Sattler, Ana Cristina Sousa Gramoza Vilarinho Santana, Rusbene Bruno Fonseca de Carvalho, José de Sousa Lima Neto, Fernando de Matos Borges, Iramaia Angelica Neri Numa, Alessandra Braga Ribeiro*, Lívio César Cunha Nunes

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
40 Downloads

Abstract

Bauhinia forficata Link is a plant rich in polyphenols that has been used mainly for its hypoglycemic activity, which is related to its antioxidant and anti-inflammatory potential. However, the beneficial effect of these bioactive compounds is directly dependent on their bioaccessibility and bioavailability, requiring processing techniques that can improve and preserve their biological activities. This work aimed to obtain nanocapsulated extracts from the infusion (ESIN) and decoction (ESDC) of B. forficata Link leaves, by spray drying. The encapsulating agents used were maltodextrin and colloidal silicon dioxide. The nanocapsules were characterized by HPLC-PDA-ESI-IT-MSn, evaluated the bioaccessibility of polyphenols after simulated digestion and their antioxidant activity. Additionally, an extensive physicochemical characterization of the nanocapsulated extracts was carried out and their stability and technological parameters were evaluated. The ESIN and ESDC extracts had yields of 57.3 % and 62.7 %, with average nanocapsules sizes of 0.202 μm and 0.179 μm, low humidity and water activity (<0.5), powder density and proper flow properties (Hausner ratio ≤ 1.25; Carr index 18–19 %). Scanning electron microscopy showed a spherical and amorphous morphology and low viscosity, which may have favored the solubility profile. The phenolic compounds of the nanocapsules degraded after 400 °C, showing high thermal stability. The infrared spectra identified the presence of maltodextrin and phenolic compounds and that there were no reactions between them. Chromatography confirmed the presence of phenolic compounds, mainly flavonols and their O-glycosylated derivatives, as well as carbohydrates, probably maltodextrin. Simulated in vitro digestion showed that polyphenols and flavonoids from ESIN and ESDC nanocapsules were bioaccessible after the gastric phase (49.38 % and 64.17 % of polyphenols and 64.08 % and 36.61 % of flavonoids) and duodenal (52.68 % and 79.06 % of polyphenols and 13.24 % and 139.03 % of flavoids), with a variation from 52.27 % to 70.55 % of the antioxidant activity maintained, by the ORAC method, after gastric digestion and still 25 %, after duodenal. Therefore, the nanoencapsulation of extracts of B. forficata is a viable option for the preservation of their bioactive compounds, making them bioaccessible and with antioxidant activity, which make them suitable for incorporation into various nutraceutical formulations, such as capsules, tablets and sachets.

Original languageEnglish
Article number100144
Number of pages13
JournalFood Chemistry: Molecular Sciences
Volume5
DOIs
Publication statusPublished - 30 Dec 2022

Keywords

  • Bioactive compounds
  • ORAC
  • Phenolic compounds
  • Simulated digestion
  • Spray drying

Fingerprint

Dive into the research topics of 'Nanoencapsulation and bioaccessibility of polyphenols of aqueous extracts from Bauhinia forficata link'. Together they form a unique fingerprint.

Cite this