PFAS biodegradation by Labrys portucalensis F11: evidence of chain shortening and identification of metabolites of PFOS, 6:2 FTS, and 5:3 FTCA

Mindula K. Wijayahena, Irina S. Moreira, Paula M. L. Castro, Sarah Dowd, Melissa I. Marciesky, Carla Ng, Diana S. Aga*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The biodegradation of three per- and polyfluoroalkyl substances (PFAS), namely perfluorooctane sulfonic acid (PFOS), 6:2-fluorotelomer sulfonic acid (6:2 FTS), and 5:3-fluorotelomer carboxylic acid (5:3 FTCA), were evaluated using Labrys portucalensis F11, an aerobic bacteria known to defluorinate fluorine-containing compounds. Cultures of L. portucalensis F11 were grown in minimal salts media and treated with 10,000 μg/L of individual PFAS as the sole carbon source in separate flasks. In PFOS-spiked media, several metabolites were detected, including perfluoroheptane sulfonic acid (PFHpS), perfluorohexane sulfonic acid (PFHxS), perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPeA), perfluorobutanoic acid (PFBA), and perfluoropropanoic acid (PFPrA). After 194-day incubation three de-fluorinated metabolites were identified: PFOS-F (m/z = 480.940, PFOS-2F (m/z = 462.980), and unsaturated PFOS-3F (m/z = 442.943). During the biodegradation of 5:3 FTCA, the following metabolites were observed: PFHxA, PFPeA, PFBA, PFPrA, and two fluorotelomer unsaturated carboxylic acids (5:3 FTUCA and 7:2 FTUCA). The biodegradation of 6:2 FTS was slower, with only 21 % decrease in concentration observed after 100 days, and subsequent formation of 4:2 FTS. On the contrary, 90 % of PFOS and 58 % of 5:3 FTCA were degraded after 100 days. These results indicate that L. portucalensis F11 can be potentially used for PFAS biodegradation in contaminated environments.

Original languageEnglish
Article number178348
Number of pages10
JournalScience of the Total Environment
Volume959
DOIs
Publication statusPublished - 10 Jan 2025

Keywords

  • Aerobic biodegradation
  • Defluorinated metabolites
  • High-resolution mass spectrometry
  • Ion mobility separation
  • Per- and polyfluoroalkyl substances

Fingerprint

Dive into the research topics of 'PFAS biodegradation by Labrys portucalensis F11: evidence of chain shortening and identification of metabolites of PFOS, 6:2 FTS, and 5:3 FTCA'. Together they form a unique fingerprint.

Cite this