Spray-drying of Dunaliella salina to produce a β-carotene rich powder

G. Leach, G. Oliveira, R. Morais*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

82 Citations (Scopus)
9 Downloads

Abstract

Powders of Dunaliella salina biomass were obtained by spray drying a cell concentrate under different drying regimes. A three-factor two-level experimental design was employed to investigate the influence of inlet temperature, outlet temperature and feed solids on β-carotene recovery. The effect of microencapsulation in a polymer matrix of maltodextrin and gum arabic was also studied. All powders were stored under specific conditions to assess the stability of the native β-carotene. There was a trend indicating that lower outlet temperature yielded higher carotenoid recoveries, β-carotene recovery varying between 57% and 91%. Microencapsulated biomass yielded 100% recoveries. All non-microencapsulated powders were unstable in terms of β-carotene content in the presence of natural light and oxygen showing 90% degradation over a 7-day period. The incorporation of a microencapsulating agent had a significant increase in the storage stability. Results indicated a first-order degradation of the β-carotene in microencapsulated powders with kinetic constants of 0.06 day-1 and 0.10 day-1. HPLC analysis showed no effect of drying processes on isomer composition (9-cis-β-carotene and all-trans-β-carotene ratio). This behaviour was also observed during storage of the microencapsulated powders.

Original languageEnglish
Pages (from-to)82-85
Number of pages4
JournalJournal of Industrial Microbiology and Biotechnology
Volume20
Issue number2
DOIs
Publication statusPublished - Feb 1998

Keywords

  • β-carotene
  • cis/trans isomers
  • Dunaliella salina
  • Microalgae
  • Microencapsulation
  • Spray-drying

Fingerprint

Dive into the research topics of 'Spray-drying of Dunaliella salina to produce a β-carotene rich powder'. Together they form a unique fingerprint.

Cite this