Stability of cupuaçu (Theobroma grandi orum) nectar during storage

Margarida C. Vieira*, Cristina L. M. Silva

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


A shelf-life study on cupuaçu nectar (Theobroma grandi orum) was carried out in two parts. Part I studied the microbial stability of the regular nectar (batch R) and the same nectar fortified with synthetic ascorbic acid (AA) (batch F), pasteurized at 90 °C for 3 min and hot filled in glass bottles. Total Plate Count (TPC), yeast and molds as well as pH, total soluble solids (TSS), titratable acidity and hidroxymethylfurfural (HMF) were followed along 43 storage days at 4, 25 and 35 °C. At the end of the storage period neither TPC nor molds or yeast had recovered the initial loads observed before pasteurization, for both R and F batches. Right after pasteurization, acidity increased slightly, pH decreased from 3.52 to 3.3, and TSS increased from 18.7 to 19.0 °Brix, with all stabilizing afterwards. Part II evaluated ascorbic (AA) and dehydroascorbic (DHAA) acids' stabilization in the two batches, R and F, and dissolved oxygen (DO) was monitored. Both batches were stored at the same temperatures as in Part I for two months. For batch R, the AA degradation results followed a reversible first order reaction (EaAA(R) =-34±6 kJ/mol, kAA(R)25°C=0.006±0.003 days-1, C0AA(R)=0.92±0.01 and C∞AA(R)= 0.43±0.19). For the (F) nectar, the experimental data fitted a first order model well (EaAA(F)=30±17 kJ/mol, kAA(F)25°C=0.0016±0.0004 days-1). DO was modeled as a fractional conversion model (EaDO= 67±17 kJ/mol, kDO25°C= 1.94±0.94 days-1, C0DO=0.97±0.03 and C∞DO= 0.55±0.01). For both nectars, storage at environmental temperatures was preferred (AA retention above 80%) to refrigeration, due to the slower rate of diffusion of DO at lower temperatures.
Original languageEnglish
Pages (from-to)160-174
Number of pages15
JournalInternational Journal of Food Studies
Issue number2
Publication statusPublished - 1 Jan 2014


  • Ascorbic acid
  • Cupuaçu nectar
  • Dissolved oxygen
  • Shelf-life
  • Stability and modeling


Dive into the research topics of 'Stability of cupuaçu (Theobroma grandi orum) nectar during storage'. Together they form a unique fingerprint.

Cite this