TY - JOUR
T1 - Sulfonamide Porphyrins as Potent Photosensitizers against Multidrug-Resistant Staphylococcus aureus (MRSA)
T2 - the role of co-adjuvants
AU - Sarabando, Sofia N.
AU - Dias, Cristina J.
AU - Vieira, Cátia
AU - Bartolomeu, Maria
AU - Neves, Maria G.P.M.S.
AU - Almeida, Adelaide
AU - Monteiro, Carlos J.P.
AU - Faustino, Maria Amparo F.
N1 - Funding Information:
The authors thank the University of Aveiro and FCT/MCT for the financial support provided to LAQV-REQUIMTE (UIDB/50006/2020 and UIDP/50006/2020), CESAM (UIDP/50017/2020 + UIDB/50017/2020 + LA/P/0094/2020) and to Project PREVINE—FCT-PTDC/ASP-PES/29576/2017, through national funds (OE) and where applicable co-financed by the FEDER-Operational Thematic Program for Competitiveness and Internationalization-COMPETE 2020, within the PT2020 Partnership Agreement. Thank are also due to the Portuguese NMR and Mass Networks.
Funding Information:
This work received support from PT national funds (FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through the projects UIDB/50006/2020 and UIDP/50006/2020 (LAQV-REQUIMTE); UIDP/50017/2020 + UIDB/50017/2020 + LA/P/0094/2020 (CESAM) and the Project FCT PREVINE—FCT-PTDC/ASP-PES/29576/2017. C.V. (SFRH/BD/150358/2019) and C.J.D. (SFRH/BD/150676/2020) thank FCT for their Ph.D. grants.
Publisher Copyright:
© 2023 by the authors.
PY - 2023/3
Y1 - 2023/3
N2 - Sulfonamides are a conventional class of antibiotics that are well-suited to combat infections. However, their overuse leads to antimicrobial resistance. Porphyrins and analogs have demonstrated excellent photosensitizing properties and have been used as antimicrobial agents to photoinactivate microorganisms, including multiresistant Staphylococcus aureus (MRSA) strains. It is well recognized that the combination of different therapeutic agents might improve the biological outcome. In this present work, a novel meso-arylporphyrin and its Zn(II) complex functionalized with sulfonamide groups were synthesized and characterized and the antibacterial activity towards MRSA with and without the presence of the adjuvant KI was evaluated. For comparison, the studies were also extended to the corresponding sulfonated porphyrin TPP(SO3H)4. Photodynamic studies revealed that all porphyrin derivatives were effective in photoinactivating MRSA (>99.9% of reduction) at a concentration of 5.0 μM upon white light radiation with an irradiance of 25 mW cm−2 and a total light dose of 15 J cm−2. The combination of the porphyrin photosensitizers with the co-adjuvant KI during the photodynamic treatment proved to be very promising allowing a significant reduction in the treatment time and photosensitizer concentration by six times and at least five times, respectively. The combined effect observed for TPP(SO2NHEt)4 and ZnTPP(SO2NHEt)4 with KI seems to be due to the formation of reactive iodine radicals. In the photodynamic studies with TPP(SO3H)4 plus KI, the cooperative action was mainly due to the formation of free iodine (I2).
AB - Sulfonamides are a conventional class of antibiotics that are well-suited to combat infections. However, their overuse leads to antimicrobial resistance. Porphyrins and analogs have demonstrated excellent photosensitizing properties and have been used as antimicrobial agents to photoinactivate microorganisms, including multiresistant Staphylococcus aureus (MRSA) strains. It is well recognized that the combination of different therapeutic agents might improve the biological outcome. In this present work, a novel meso-arylporphyrin and its Zn(II) complex functionalized with sulfonamide groups were synthesized and characterized and the antibacterial activity towards MRSA with and without the presence of the adjuvant KI was evaluated. For comparison, the studies were also extended to the corresponding sulfonated porphyrin TPP(SO3H)4. Photodynamic studies revealed that all porphyrin derivatives were effective in photoinactivating MRSA (>99.9% of reduction) at a concentration of 5.0 μM upon white light radiation with an irradiance of 25 mW cm−2 and a total light dose of 15 J cm−2. The combination of the porphyrin photosensitizers with the co-adjuvant KI during the photodynamic treatment proved to be very promising allowing a significant reduction in the treatment time and photosensitizer concentration by six times and at least five times, respectively. The combined effect observed for TPP(SO2NHEt)4 and ZnTPP(SO2NHEt)4 with KI seems to be due to the formation of reactive iodine radicals. In the photodynamic studies with TPP(SO3H)4 plus KI, the cooperative action was mainly due to the formation of free iodine (I2).
KW - Antimicrobial resistance
KW - Gram-positive bacteria
KW - MRSA
KW - Photodynamic therapy
KW - Photosensitizer
KW - Porphyrins
KW - Potassium iodide
KW - Singlet oxygen
KW - Staphylococcus aureus
KW - Sulfonamides
UR - http://www.scopus.com/inward/record.url?scp=85149816331&partnerID=8YFLogxK
U2 - 10.3390/molecules28052067
DO - 10.3390/molecules28052067
M3 - Article
C2 - 36903314
AN - SCOPUS:85149816331
SN - 1420-3049
VL - 28
JO - Molecules
JF - Molecules
IS - 5
M1 - 2067
ER -