Survival of Listeria monocytogenes with different antibiotic resistance patterns to food-associated stresses

Norton Komora, Carolina Bruschi, Rui Magalhães, Vânia Ferreira, Paula Teixeira*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

60 Citations (Scopus)

Abstract

The ongoing rise of antibiotic resistant microbial pathogens has become one of the major public health threats worldwide. Despite all the effort and actions taken so far, a proliferation of antibiotic resistant (AR) and multi-antibiotic resistant (MAR) strains is still observed, including in foodborne pathogens. This trend has been also noted recently for isolates of Listeria monocytogenes, a species that, although remaining largely sensitive to clinically relevant antimicrobials, has been reported to develop increased tolerance to antibiotics, particularly in isolates recovered from the food-chain. In this study we compared the ability of MAR (n = 8), AR (n = 18) and antibiotic susceptible (AS, n = 11) L. monocytogenes strains from food and clinical origin to survive to different environmental stress conditions, including temperature (58 °C), acidic stress (1% v/v lactic acid, pH 3.5), and osmotic stress (37% w/v NaCl). The presence of antibiotic active efflux among MAR and AR strains, and its role on L. monocytogenes tolerance to different antimicrobial compounds was also investigated, namely; hydrogen peroxide; organic acids (acetic, citric and lactic); nisin; benzalkonium chloride (BC); and, sodium nitrite. While no significant differences were observed in the survival of the 37 strains exposed to high temperature (58 °C), overall the mean logarithmic reduction of clinical strains was statistically lower after acid and salt exposure than that observed for strains of food origin; but both food and clinical strains resistant to two or three antibiotics were significantly less susceptible to acid (lactic acid 1% v/v) and osmotic stresses (37% w/v NaCl) when compared to AS strains. Using the EtBr-agar Cartwheel method, it was possible to detect efflux pumps in three of the 26 MAR and AR isolates, including one control strain; the active efflux in theses isolates was proven to be associated with fluoroquinolone resistance, and possible extrusion of BC and hydrogen peroxide. The mechanisms responsible for the possible correlation between resistance to antibiotics and to acid or salt stress in L. monocytogenes have yet to be understood.

Original languageEnglish
Pages (from-to)79-87
Number of pages9
JournalInternational Journal of Food Microbiology
Volume245
DOIs
Publication statusPublished - 20 Mar 2017

Keywords

  • Antibiotic
  • Efflux pump
  • EtBr-agar cartwheel method
  • Listeria monocytogenes
  • Resistance
  • Stress

Fingerprint

Dive into the research topics of 'Survival of Listeria monocytogenes with different antibiotic resistance patterns to food-associated stresses'. Together they form a unique fingerprint.

Cite this