Synthesis of novel diketopyrrolopyrrole-rhodamine conjugates and their ability for sensing Cu2+ and Li+

Carla Queirós, Vítor A. S. Almodôvar, Fábio Martins, Andreia Leite, Augusto C. Tomé, Ana M. G. Silva*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

The search for accurate and sensitive methods to detect chemical substances, namely cations and anions, is urgent and widely sought due to the enormous impact that some of these chemical species have on human health and on the environment. Here, we present a new platform for the efficient sensing of Cu2+ and Li+ cations. For this purpose, two novel photoactive diketopyrrolopyrrole-rhodamine conjugates were synthesized through the condensation of a diketopyrrolopyrrole dicarbaldehyde with rhodamine B hydrazide. The resulting chemosensors 1 and 2, bearing one or two rhodamine hydrazide moieties, respectively, were characterized by 1H and 13C NMR and high-resolution mass spectrometry, and their photophysical and ion-responsive behaviours were investigated via absorption and fluorescence measurements. Chemosensors 1 and 2 displayed a rapid colorimetric response upon the addition of Cu2+, with a remarkable increase in the absorbance and fluorescence intensities. The addition of other metal ions caused no significant effects. Moreover, the resulting chemosensor-Cu2+ complexes revealed to be good probes for the sensing of Li+ with reversibility and low detection limits. The recognition ability of the new chemosensors was investigated by absorption and fluorescence titrations and competitive studies.
Original languageEnglish
Article number7219
Number of pages15
JournalMolecules
Volume27
Issue number21
DOIs
Publication statusPublished - Oct 2022
Externally publishedYes

Keywords

  • Rhodamine-based chemosensors
  • Diketopyrrolopyrroles
  • Copper complexes
  • Lithium detection
  • Displacement mechanism

Fingerprint

Dive into the research topics of 'Synthesis of novel diketopyrrolopyrrole-rhodamine conjugates and their ability for sensing Cu2+ and Li+'. Together they form a unique fingerprint.

Cite this