TY - JOUR
T1 - The importance of sleep fragmentation on the hemodynamic dipping in obstructive sleep apnea patients
AU - Staats, Richard
AU - Barros, Inês
AU - Fernandes, Dina
AU - Grencho, Dina
AU - Reis, Cátia
AU - Matos, Filipa
AU - Valença, João
AU - Marôco, João
AU - Almeida, António Bugalho de
AU - Bárbara, Cristina
N1 - Funding Information:
This manuscript was funded by the Fundação para a Ciência e a Tecnologia.
Funding Information:
The authors would like to thank the whole team of the Department of Respiratory Pathophysiology and Sleep Medicine of the Departamento de T?rax, Centro Hospitalar Universit?rio Lisboa Norte for their support of this study. Funding. This manuscript was funded by the Funda??o para a Ci?ncia e a Tecnologia.
Publisher Copyright:
© Copyright © 2020 Staats, Barros, Fernandes, Grencho, Reis, Matos, Valença, Marôco, de Almeida and Bárbara.
PY - 2020/3/13
Y1 - 2020/3/13
N2 - Introduction: Obstructive sleep apnea (OSA) has been associated with non-dipping blood pressure (BP). The precise mechanism is still under investigation, but repetitive oxygen desaturation and arousal induced sleep fragmentation are considered the main contributors. Methods: We analyzed beat-to-beat measurements of hemodynamic parameters (HPs) during a 25-min period of wake–sleep transition. Differences in the mean HP values for heart rate (HR), systolic BP (SBP), and stroke volume (SV) during wake and sleep and their standard deviations (SDs) were compared between 34 controls (C) and 22 OSA patients. The Student’s t-test for independent samples and the effect size by Cohen’s d (d) were calculated. HP evolution was investigated by plotting the measured HP values against each consecutive pulse wave. After a simple regression analysis, the calculated coefficient beta (SCB) was used to indicate the HP evolution. We furthermore explored by a hierarchical block regression which variables increased the prediction for the SCB: model 1 BMI and age, model 2 + apnea/hypopnea index (AHI), and model 3 + arousal index (AI). Results: Between the two groups, the SBP increased in OSA and decreased in C resulting in a significant difference (p = 0.001; d = 0.92). The SV demonstrated a similar development (p = 0.047; d = 0.56). The wake/sleep variation of the HP measured by the SD was higher in the OSA group—HR: p < 0.001; d = 1.2; SBP: p = 0.001; d = 0.94; and SV: p = 0.005; d = 0.82. The hierarchical regression analysis of the SCB demonstrated in SBP that the addition of AI to AHI resulted in ΔR2: +0.163 and ΔF + 13.257 (p = 0.001) and for SV ΔR2: +0.07 and ΔF 4.83 (p = 0.003). The AI but not the AHI remained statistically significant in the regression analysis model 3—SBP: β = 0.717, p = 0.001; SV: β = 0.469, p = 0.033. Conclusion: In this study, we demonstrated that in OSA, the physiological dipping in SBP and SV decreased, and the variation of all investigated parameters increased. Hierarchical regression analysis indicates that the addition of the AI to BMI, age, and AHI increases the prediction of the HP evolution following sleep onset for both SBP and SV and may be the most important variable.
AB - Introduction: Obstructive sleep apnea (OSA) has been associated with non-dipping blood pressure (BP). The precise mechanism is still under investigation, but repetitive oxygen desaturation and arousal induced sleep fragmentation are considered the main contributors. Methods: We analyzed beat-to-beat measurements of hemodynamic parameters (HPs) during a 25-min period of wake–sleep transition. Differences in the mean HP values for heart rate (HR), systolic BP (SBP), and stroke volume (SV) during wake and sleep and their standard deviations (SDs) were compared between 34 controls (C) and 22 OSA patients. The Student’s t-test for independent samples and the effect size by Cohen’s d (d) were calculated. HP evolution was investigated by plotting the measured HP values against each consecutive pulse wave. After a simple regression analysis, the calculated coefficient beta (SCB) was used to indicate the HP evolution. We furthermore explored by a hierarchical block regression which variables increased the prediction for the SCB: model 1 BMI and age, model 2 + apnea/hypopnea index (AHI), and model 3 + arousal index (AI). Results: Between the two groups, the SBP increased in OSA and decreased in C resulting in a significant difference (p = 0.001; d = 0.92). The SV demonstrated a similar development (p = 0.047; d = 0.56). The wake/sleep variation of the HP measured by the SD was higher in the OSA group—HR: p < 0.001; d = 1.2; SBP: p = 0.001; d = 0.94; and SV: p = 0.005; d = 0.82. The hierarchical regression analysis of the SCB demonstrated in SBP that the addition of AI to AHI resulted in ΔR2: +0.163 and ΔF + 13.257 (p = 0.001) and for SV ΔR2: +0.07 and ΔF 4.83 (p = 0.003). The AI but not the AHI remained statistically significant in the regression analysis model 3—SBP: β = 0.717, p = 0.001; SV: β = 0.469, p = 0.033. Conclusion: In this study, we demonstrated that in OSA, the physiological dipping in SBP and SV decreased, and the variation of all investigated parameters increased. Hierarchical regression analysis indicates that the addition of the AI to BMI, age, and AHI increases the prediction of the HP evolution following sleep onset for both SBP and SV and may be the most important variable.
KW - Arterial blood pressure
KW - Cardiovascular risk
KW - Sleep disordered breathing
KW - Sleep disturbance
KW - Stroke volume
UR - http://www.scopus.com/inward/record.url?scp=85082644251&partnerID=8YFLogxK
U2 - 10.3389/fphys.2020.00104
DO - 10.3389/fphys.2020.00104
M3 - Article
C2 - 32231580
AN - SCOPUS:85082644251
SN - 1664-042X
VL - 11
JO - Frontiers in Physiology
JF - Frontiers in Physiology
M1 - 104
ER -