The relationship between rising temperatures and malaria incidence in Hainan, China, from 1984 to 2010: a longitudinal cohort study

Zengmiao Wang, Yonghong Liu, Yuchun Li, Guangze Wang, José Lourenço, Moritz Kraemer, Qixin He, Bernard Cazelles, Yuchun Li, Ruixue Wang, Dongqi Gao, Yuchun Li, Wenjing Song, Dingwei Sun, Lu Dong, Oliver G. Pybus, Nils Chr Stenseth*, Huaiyu Tian*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

Background: The influence of rising global temperatures on malaria dynamics and distribution remains controversial, especially in central highland regions. We aimed to address this subject by studying the spatiotemporal heterogeneity of malaria and the effect of climate change on malaria transmission over 27 years in Hainan, an island province in China. Methods: For this longitudinal cohort study, we used a decades-long dataset of malaria incidence reports from Hainan, China, to investigate the pattern of malaria transmission in Hainan relative to temperature and the incidence at increasing altitudes. Climatic data were obtained from the local meteorological stations in Hainan during 1984–2010 and the WorldClim dataset. A temperature-dependent R0 model and negative binomial generalised linear model were used to decipher the relationship between climate factors and malaria incidence in the tropical region. Findings: Over the past few decades, the annual peak incidence has appeared earlier in the central highland regions but later in low-altitude regions in Hainan, China. Results from the temperature-dependent model showed that these long-term changes of incidence peak timing are linked to rising temperatures (of about 1·5°C). Further, a 1°C increase corresponds to a change in cases of malaria from –5·6% (95% CI –4·5 to –6·6) to –9·2% (95% CI –7·6 to –10·9) from the northern plain regions to the central highland regions during the rainy season. In the dry season, the change in cases would be 4·6% (95% CI 3·7 to 5·5) to 11·9% (95% CI 9·8 to 14·2) from low-altitude areas to high-altitude areas. Interpretation: Our study empirically supports the idea that increasing temperatures can generate opposing effects on malaria dynamics for lowland and highland regions. This should be further investigated and incorporated into future modelling, disease burden calculations, and malaria control, with attention for central highland regions under climate change. Funding: Scientific and Technological Innovation 2030: Major Project of New Generation Artificial Intelligence, National Natural Science Foundation of China, Beijing Natural Science Foundation, National Key Research and Development Program of China, Young Elite Scientist Sponsorship Program by CAST, Research on Key Technologies of Plague Prevention and Control in Inner Mongolia Autonomous Region, and Beijing Advanced Innovation Program for Land Surface Science.

Original languageEnglish
Pages (from-to)e350-e358
JournalThe Lancet Planetary Health
Volume6
Issue number4
DOIs
Publication statusPublished - Apr 2022
Externally publishedYes

Fingerprint

Dive into the research topics of 'The relationship between rising temperatures and malaria incidence in Hainan, China, from 1984 to 2010: a longitudinal cohort study'. Together they form a unique fingerprint.

Cite this