TY - JOUR
T1 - The relationship between rising temperatures and malaria incidence in Hainan, China, from 1984 to 2010
T2 - a longitudinal cohort study
AU - Wang, Zengmiao
AU - Liu, Yonghong
AU - Li, Yuchun
AU - Wang, Guangze
AU - Lourenço, José
AU - Kraemer, Moritz
AU - He, Qixin
AU - Cazelles, Bernard
AU - Li, Yuchun
AU - Wang, Ruixue
AU - Gao, Dongqi
AU - Li, Yuchun
AU - Song, Wenjing
AU - Sun, Dingwei
AU - Dong, Lu
AU - Pybus, Oliver G.
AU - Stenseth, Nils Chr
AU - Tian, Huaiyu
N1 - Funding Information:
We thank Sunetra Gupta, Robert W Snow, and Christopher Dye for comments that have helped improve this Article. This study was funded by the Scientific and Technological Innovation 2030: Major Project of New Generation Artificial Intelligence (2021ZD0111201); National Natural Science Foundation of China (82073616, 81460520); Beijing Natural Science Foundation (JQ18025); National Key Research and Development Program of China; Young Elite Scientist Sponsorship Program by CAST (2018QNRC001); Research on Key Technologies of Plague Prevention and Control in Inner Mongolia Autonomous Region (2021ZD0006); and Beijing Advanced Innovation Program for Land Surface Science (110631111). HT and OGP acknowledge support from the Oxford Martin School; JL acknowledges the Department of Zoology at the University of Oxford.
Funding Information:
We thank Sunetra Gupta, Robert W Snow, and Christopher Dye for comments that have helped improve this Article. This study was funded by the Scientific and Technological Innovation 2030: Major Project of New Generation Artificial Intelligence (2021ZD0111201); National Natural Science Foundation of China (82073616, 81460520); Beijing Natural Science Foundation (JQ18025); National Key Research and Development Program of China; Young Elite Scientist Sponsorship Program by CAST (2018QNRC001); Research on Key Technologies of Plague Prevention and Control in Inner Mongolia Autonomous Region (2021ZD0006); and Beijing Advanced Innovation Program for Land Surface Science (110631111). HT and OGP acknowledge support from the Oxford Martin School; JL acknowledges the Department of Zoology at the University of Oxford.
Publisher Copyright:
© 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license
PY - 2022/4
Y1 - 2022/4
N2 - Background: The influence of rising global temperatures on malaria dynamics and distribution remains controversial, especially in central highland regions. We aimed to address this subject by studying the spatiotemporal heterogeneity of malaria and the effect of climate change on malaria transmission over 27 years in Hainan, an island province in China. Methods: For this longitudinal cohort study, we used a decades-long dataset of malaria incidence reports from Hainan, China, to investigate the pattern of malaria transmission in Hainan relative to temperature and the incidence at increasing altitudes. Climatic data were obtained from the local meteorological stations in Hainan during 1984–2010 and the WorldClim dataset. A temperature-dependent R0 model and negative binomial generalised linear model were used to decipher the relationship between climate factors and malaria incidence in the tropical region. Findings: Over the past few decades, the annual peak incidence has appeared earlier in the central highland regions but later in low-altitude regions in Hainan, China. Results from the temperature-dependent model showed that these long-term changes of incidence peak timing are linked to rising temperatures (of about 1·5°C). Further, a 1°C increase corresponds to a change in cases of malaria from –5·6% (95% CI –4·5 to –6·6) to –9·2% (95% CI –7·6 to –10·9) from the northern plain regions to the central highland regions during the rainy season. In the dry season, the change in cases would be 4·6% (95% CI 3·7 to 5·5) to 11·9% (95% CI 9·8 to 14·2) from low-altitude areas to high-altitude areas. Interpretation: Our study empirically supports the idea that increasing temperatures can generate opposing effects on malaria dynamics for lowland and highland regions. This should be further investigated and incorporated into future modelling, disease burden calculations, and malaria control, with attention for central highland regions under climate change. Funding: Scientific and Technological Innovation 2030: Major Project of New Generation Artificial Intelligence, National Natural Science Foundation of China, Beijing Natural Science Foundation, National Key Research and Development Program of China, Young Elite Scientist Sponsorship Program by CAST, Research on Key Technologies of Plague Prevention and Control in Inner Mongolia Autonomous Region, and Beijing Advanced Innovation Program for Land Surface Science.
AB - Background: The influence of rising global temperatures on malaria dynamics and distribution remains controversial, especially in central highland regions. We aimed to address this subject by studying the spatiotemporal heterogeneity of malaria and the effect of climate change on malaria transmission over 27 years in Hainan, an island province in China. Methods: For this longitudinal cohort study, we used a decades-long dataset of malaria incidence reports from Hainan, China, to investigate the pattern of malaria transmission in Hainan relative to temperature and the incidence at increasing altitudes. Climatic data were obtained from the local meteorological stations in Hainan during 1984–2010 and the WorldClim dataset. A temperature-dependent R0 model and negative binomial generalised linear model were used to decipher the relationship between climate factors and malaria incidence in the tropical region. Findings: Over the past few decades, the annual peak incidence has appeared earlier in the central highland regions but later in low-altitude regions in Hainan, China. Results from the temperature-dependent model showed that these long-term changes of incidence peak timing are linked to rising temperatures (of about 1·5°C). Further, a 1°C increase corresponds to a change in cases of malaria from –5·6% (95% CI –4·5 to –6·6) to –9·2% (95% CI –7·6 to –10·9) from the northern plain regions to the central highland regions during the rainy season. In the dry season, the change in cases would be 4·6% (95% CI 3·7 to 5·5) to 11·9% (95% CI 9·8 to 14·2) from low-altitude areas to high-altitude areas. Interpretation: Our study empirically supports the idea that increasing temperatures can generate opposing effects on malaria dynamics for lowland and highland regions. This should be further investigated and incorporated into future modelling, disease burden calculations, and malaria control, with attention for central highland regions under climate change. Funding: Scientific and Technological Innovation 2030: Major Project of New Generation Artificial Intelligence, National Natural Science Foundation of China, Beijing Natural Science Foundation, National Key Research and Development Program of China, Young Elite Scientist Sponsorship Program by CAST, Research on Key Technologies of Plague Prevention and Control in Inner Mongolia Autonomous Region, and Beijing Advanced Innovation Program for Land Surface Science.
UR - http://www.scopus.com/inward/record.url?scp=85127496368&partnerID=8YFLogxK
U2 - 10.1016/S2542-5196(22)00039-0
DO - 10.1016/S2542-5196(22)00039-0
M3 - Article
C2 - 35397223
AN - SCOPUS:85127496368
SN - 2542-5196
VL - 6
SP - e350-e358
JO - The Lancet Planetary Health
JF - The Lancet Planetary Health
IS - 4
ER -