Abstract
The bacterial pathogen, Streptococcus pneumoniae (the pneumococcus), is a leading cause of life-threatening illness and death worldwide. Available conjugate vaccines target only a small subset (up to 13) of >90 known capsular serotypes of S. pneumoniae and, since their introduction, increases in non-vaccine serotypes have been recorded in several countries: a phenomenon termed Vaccine Induced Serotype Replacement (VISR). Here, using a combination of mathematical modelling and whole genome analysis, we show that targeting particular serotypes through vaccination can also cause their metabolic and virulence-associated components to transfer through recombination to non-vaccine serotypes: a phenomenon we term Vaccine-Induced Metabolic Shift (VIMS). Our results provide a novel explanation for changes observed in the population structure of the pneumococcus following vaccination, and have important implications for strain-targeted vaccination in a range of infectious disease systems.
Original language | English |
---|---|
Article number | e1005034 |
Journal | PLoS Pathogens |
Volume | 11 |
Issue number | 7 |
DOIs | |
Publication status | Published - 1 Jul 2015 |
Externally published | Yes |