Bioactive extracts from brewer's spent grain

Resultado de pesquisarevisão de pares

27 Citações (Scopus)

Resumo

In this study, antioxidant-rich extracts from brewer's spent grain (BSG) extracted by solid-to-liquid extraction using different solvents water and ethanol and their mixtures at two ratios (80% ethanol:water (v/v) and 60% ethanol:water (v/v)) were characterized. Nutritional composition was evaluated for the extracts and for the solid residues obtained after extraction. Additionally, the extracts were analyzed for the total phenolic content and individual phenolic compounds and related biological properties including antioxidant capacity (ABTS; ORAC and DNA protection), antihypertensive capacity, antibacterial activity and antibiofilm capacity. Safety was also demonstrated through genotoxicity and cytotoxicity tests. The results obtained showed that while all the extracts exhibited high antioxidant capacity (except ethanolic extract), the highest values were obtained for the 60% ethanol:water extract. The identification of phenolic compounds using HPLC showed that catechin and vanillin were the main compounds identified with the highest concentration being obtained for 60% ethanol: water extraction. In the biological activity assays, water and hydroethanolic extracts were multifunctional (antioxidant and antihypertensive capacity, antibacterial and antibiofilm activity), and the 80% ethanol:water presented better results in some assays. All were non-genotoxic, but the cytotoxicity was dependent on the extract concentration, with complete safe application for all up to 1 mg mL-1. Therefore, this study shows the potential of a viable green solvent based and low cost extraction recovery method of bioactive compounds from brewer's spent grain.
Idioma originalEnglish
Páginas (de-até)8963-8977
Número de páginas15
RevistaFood & function
Volume11
Número de emissão10
DOIs
Estado da publicaçãoPublicado - out. 2020

Impressão digital

Mergulhe nos tópicos de investigação de “Bioactive extracts from brewer's spent grain“. Em conjunto formam uma impressão digital única.

Citação