Boolean lexicographic optimization: algorithms & applications

João Marques-Silva, Josep Argelich, Ana Graça, Inês Lynce*

*Autor correspondente para este trabalho

    Resultado de pesquisarevisão de pares

    68 Citações (Scopus)

    Resumo

    Multi-Objective Combinatorial Optimization (MOCO) problems find a wide range of practical application problems, some of which involving Boolean variables and constraints. This paper develops and evaluates algorithms for solving MOCO problems, defined on Boolean domains, and where the optimality criterion is lexicographic. The proposed algorithms build on existing algorithms for either Maximum Satisfiability (MaxSAT), Pseudo-Boolean Optimization (PBO), or Integer Linear Programming (ILP). Experimental results, obtained on problem instances from haplotyping with pedigrees and software package dependencies, show that the proposed algorithms can provide significant performance gains over state of the art MaxSAT, PBO and ILP algorithms. Finally, the paper also shows that lexicographic optimization conditions are observed in the majority of the problem instances from the MaxSAT evaluations, motivating the development of dedicated algorithms that can exploit lexicographic optimization conditions in general MaxSAT problem instances.
    Idioma originalEnglish
    Páginas (de-até)317-343
    Número de páginas27
    RevistaAnnals of Mathematics and Artificial Intelligence
    Volume62
    Número de emissão3-4
    DOIs
    Estado da publicaçãoPublicado - jul. 2011

    Impressão digital

    Mergulhe nos tópicos de investigação de “Boolean lexicographic optimization: algorithms & applications“. Em conjunto formam uma impressão digital única.

    Citação