TY - JOUR
T1 - Chitosan:β-glucan particles as a new adjuvant for the hepatitis B antigen
AU - Soares, Edna
AU - Jesus, Sandra
AU - Borges, Olga
N1 - Funding Information:
This work was financed by the European Regional Development Fund (ERDF), through the Centro 2020 Regional Operational Programme under project CENTRO-01-0145-FEDER-000008:BrainHealth 2020, and through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT – Fundação para a Ciência e a Tecnologia, I.P., under project PROSAFE/0001/2016, and the strategic projects POCI-01-0145-FEDER-030331 and POCI-01-0145-FEDER-007440 (UID/NEU/04539/2013). Edna Soares thanks FCT for PhD fellowship DFRH – SFRH/BD/96167/2013, Luisa Cortes and Margarida Caldeira from Microscopy Imaging Center of Coimbra (MICC-CNC) and Mónica Zuzarte, the TEM technician, for expert technical assistance under the project PPBI-POCI-01-0145-FEDER-022122.
Publisher Copyright:
© 2018
PY - 2018/10
Y1 - 2018/10
N2 - The development of new vaccine adjuvants is urgently needed not only to enable new routes of vaccine administration but mostly to go beyond protective humoral immunity, often insufficient to fight infectious diseases. The association of two or more immunopotentiators or mimicking pathogen physicochemical properties are strategies that can favor powerful and more balanced Th1/Th2 immune responses. Therefore, the present work aimed to combine both chitosan and β-glucan biopolymers in the same particle, preferably with surface β-glucan localization to simulate the cell wall of some pathogens and to stimulate the immune cells expressing the Dectin-1 receptor. Chitosan:β-glucan particles (ChiGluPs) were developed through a chitosan precipitation method. The chitosan was precipitated into a β-glucan alkaline solution followed by genipin crosslink. The optimized method produced particles with a mean diameter of 837 nm for ChiPs and 1274 nm for ChiGluPs. β-glucan surface location was confirmed by zeta potential measurements (+24 mV for ChiGluPs and +36 mV for ChiPs) and zeta potential titration. These new particles showed high antigen loading efficacy and low cytotoxicity. Mice vaccination studies revealed that both ChiPs and ChiGluPs had an adjuvant effect for the hepatitis B surface antigen (HBsAg), with ChiGluPs resulting in serum anti-HBsAg total IgG 16-fold higher than ChiPs, when administered with 1.5 µg HBsAg per dose. Specifically, IgG1 subclass was 5-fold higher and IgG3 subclass was 4-fold higher for ChiGluPs comparing to ChiPs. Overall, the preparation method developed allowed the advantageous combination of β-glucan with chitosan, without chemical functionalization, which represents an additional step toward tailor-made adjuvants production using simple precipitation techniques.
AB - The development of new vaccine adjuvants is urgently needed not only to enable new routes of vaccine administration but mostly to go beyond protective humoral immunity, often insufficient to fight infectious diseases. The association of two or more immunopotentiators or mimicking pathogen physicochemical properties are strategies that can favor powerful and more balanced Th1/Th2 immune responses. Therefore, the present work aimed to combine both chitosan and β-glucan biopolymers in the same particle, preferably with surface β-glucan localization to simulate the cell wall of some pathogens and to stimulate the immune cells expressing the Dectin-1 receptor. Chitosan:β-glucan particles (ChiGluPs) were developed through a chitosan precipitation method. The chitosan was precipitated into a β-glucan alkaline solution followed by genipin crosslink. The optimized method produced particles with a mean diameter of 837 nm for ChiPs and 1274 nm for ChiGluPs. β-glucan surface location was confirmed by zeta potential measurements (+24 mV for ChiGluPs and +36 mV for ChiPs) and zeta potential titration. These new particles showed high antigen loading efficacy and low cytotoxicity. Mice vaccination studies revealed that both ChiPs and ChiGluPs had an adjuvant effect for the hepatitis B surface antigen (HBsAg), with ChiGluPs resulting in serum anti-HBsAg total IgG 16-fold higher than ChiPs, when administered with 1.5 µg HBsAg per dose. Specifically, IgG1 subclass was 5-fold higher and IgG3 subclass was 4-fold higher for ChiGluPs comparing to ChiPs. Overall, the preparation method developed allowed the advantageous combination of β-glucan with chitosan, without chemical functionalization, which represents an additional step toward tailor-made adjuvants production using simple precipitation techniques.
KW - Chitosan
KW - HBsAg
KW - Polymeric particles
KW - Vaccine adjuvants
KW - β-glucan
UR - http://www.scopus.com/inward/record.url?scp=85050402563&partnerID=8YFLogxK
U2 - 10.1016/j.ejpb.2018.07.018
DO - 10.1016/j.ejpb.2018.07.018
M3 - Article
C2 - 30048745
AN - SCOPUS:85050402563
SN - 0939-6411
VL - 131
SP - 33
EP - 43
JO - European Journal of Pharmaceutics and Biopharmaceutics
JF - European Journal of Pharmaceutics and Biopharmaceutics
ER -