Deep reinforcement learning for inventory control: a roadmap

Robert N. Boute*, Joren Gijsbrechts, Willem van Jaarsveld, Nathalie Vanvuchelen

*Autor correspondente para este trabalho

Resultado de pesquisarevisão de pares

8 Citações (Scopus)
1 Transferências (Pure)

Resumo

Deep reinforcement learning (DRL) has shown great potential for sequential decision-making, including early developments in inventory control. Yet, the abundance of choices that come with designing a DRL algorithm, combined with the intense computational effort to tune and evaluate each choice, may hamper their application in practice. This paper describes the key design choices of DRL algorithms to facilitate their implementation in inventory control. We also shed light on possible future research avenues that may elevate the current state-of-the-art of DRL applications for inventory control and broaden their scope by leveraging and improving on the structural policy insights within inventory research. Our discussion and roadmap may also spur future research in other domains within operations management.
Idioma originalEnglish
Páginas (de-até)401-412
Número de páginas12
RevistaEuropean Journal of Operational Research
Volume298
Número de emissão2
DOIs
Estado da publicaçãoPublished - 16 abr 2022

Impressão digital

Mergulhe nos tópicos de investigação de “Deep reinforcement learning for inventory control: a roadmap“. Em conjunto formam uma impressão digital única.

Citação