Development of high performance and facile to pack molecularly imprinted particles for aqueous applications

D. Oliveira, A. Freitas, P. Kadhirvel, R. C. S. Dias*, M. R. P. F. N. Costa

*Autor correspondente para este trabalho

Resultado de pesquisarevisão de pares

6 Citações (Scopus)


Different kinds of molecularly imprinted particles were synthesized and compared, aiming at the development of materials combining high molecular recognition capabilities and facile use as column packing materials for chromatographic aqueous applications. Solution, inverse-suspension and precipitation polymerization were considered and two different model molecules (5-fluorouracil and caffeine) were used to highlight the effect of the interaction between the template molecule and the functional monomer on imprinting efficiency. Particles synthesized through the proposed inverse-suspension process exhibit facile use for packing columns, allow the stable running of chromatographic systems and present a high performance in drug uptake and release in aqueous media. Frontal analysis measurements highlight these key features of the synthesized particles. Drug sorption capabilities of 0.890 μmol/g and 5.774 μmol/g were measured for 5-fluorouracil and caffeine, respectively, using frontal analysis with eluents containing the target molecules at concentration 0.1 mM. Due to the lower amount of solvent required than with precipitation polymerization, the developed inverse-suspension process presents high synthesis yields, which can be exploited for the large-scale manufacture and commercialization of molecularly imprinted materials. The combined features of the particles makes possible their direct use in bioseparations or in the development of assays and pharmacokinetic studies concerning the presence of drugs in biological fluids.
Idioma originalEnglish
Páginas (de-até)87-99
Número de páginas13
RevistaBiochemical Engineering Journal
Estado da publicaçãoPublished - 15 jul 2016
Publicado externamenteSim

Impressão digital

Mergulhe nos tópicos de investigação de “Development of high performance and facile to pack molecularly imprinted particles for aqueous applications“. Em conjunto formam uma impressão digital única.