TY - JOUR
T1 - Glycoprotein L sets the neutralization profile of murid herpesvirus 4
AU - Gillet, Laurent
AU - Alenquer, Marta
AU - Glauser, Daniel L.
AU - Colaco, Susanna
AU - May, Janet S.
AU - Stevenson, Philip G.
PY - 2009
Y1 - 2009
N2 - Antibodies readily neutralize acute, epidemic viruses, but are less effective against more indolent pathogens such as herpesviruses. Murid herpesvirus 4 (MuHV-4) provides an accessible model for tracking the fate of antibody-exposed gammaherpesvirus virions. Glycoprotein L (gL) plays a central role in MuHV-4 entry: it allows gH to bind heparan sulfate and regulates fusion-associated conformation changes in gH and gB. However, gL is non-essential: heparan sulfate binding can also occur via gp70, and the gB-gH complex alone seems to be sufficient for membrane fusion. Here, we investigated how gL affects the susceptibility of MuHV-4 to neutralization. Immune sera neutralized gL- virions more readily than gL+ virions, chiefly because heparan sulfate binding now depended on gp70 and was therefore easier to block. However, there were also post-binding effects. First, the downstream, gL-independent conformation of gH became a neutralization target; gL normally prevents this by holding gH in an antigenically distinct heterodimer until after endocytosis. Second, gL- virions were more vulnerable to gB-directed neutralization. This covered multiple epitopes and thus seemed to reflect a general opening up of the gH-gB entry complex, which gL again normally restricts to late endosomes. gL therefore limits MuHV-4 neutralization by providing redundancy in cell binding and by keeping key elements of the virion fusion machinery hidden until after endocytosis.
AB - Antibodies readily neutralize acute, epidemic viruses, but are less effective against more indolent pathogens such as herpesviruses. Murid herpesvirus 4 (MuHV-4) provides an accessible model for tracking the fate of antibody-exposed gammaherpesvirus virions. Glycoprotein L (gL) plays a central role in MuHV-4 entry: it allows gH to bind heparan sulfate and regulates fusion-associated conformation changes in gH and gB. However, gL is non-essential: heparan sulfate binding can also occur via gp70, and the gB-gH complex alone seems to be sufficient for membrane fusion. Here, we investigated how gL affects the susceptibility of MuHV-4 to neutralization. Immune sera neutralized gL- virions more readily than gL+ virions, chiefly because heparan sulfate binding now depended on gp70 and was therefore easier to block. However, there were also post-binding effects. First, the downstream, gL-independent conformation of gH became a neutralization target; gL normally prevents this by holding gH in an antigenically distinct heterodimer until after endocytosis. Second, gL- virions were more vulnerable to gB-directed neutralization. This covered multiple epitopes and thus seemed to reflect a general opening up of the gH-gB entry complex, which gL again normally restricts to late endosomes. gL therefore limits MuHV-4 neutralization by providing redundancy in cell binding and by keeping key elements of the virion fusion machinery hidden until after endocytosis.
UR - http://www.scopus.com/inward/record.url?scp=67449104510&partnerID=8YFLogxK
U2 - 10.1099/vir.0.008755-0
DO - 10.1099/vir.0.008755-0
M3 - Article
C2 - 19264603
AN - SCOPUS:67449104510
SN - 0022-1317
VL - 90
SP - 1202
EP - 1214
JO - Journal of General Virology
JF - Journal of General Virology
IS - 5
ER -