Hierarchical scaffolds enhance osteogenic differentiation of human Wharton's jelly derived stem cells

Analuce Canha-Gouveia, Ana Rita Costa-Pinto, Albino M. Martins, Nuno A. Silva, Susana Faria, Rui A. Sousa, António J. Salgado, Nuno Sousa, Rui L. Reis, Nuno M. Neves

Resultado de pesquisarevisão de pares

18 Citações (Scopus)

Resumo

Hierarchical structures, constituted by polymeric nano and microfibers, have been considered promising scaffolds for tissue engineering strategies, mainly because they mimic, in some way, the complexity and nanoscale detail observed in real organs. The chondrogenic potential of these scaffolds has been previously demonstrated, but their osteogenic potential is not yet corroborated. In order to assess if a hierarchical structure, with nanoscale details incorporated, is an improved scaffold for bone tissue regeneration, we evaluate cell adhesion, proliferation, and osteogenic differentiation of human Wharton's jelly derived stem cells (hWJSCs), seeded into hierarchical fibrous scaffolds. Biological data corroborates that hierarchical fibrous scaffolds show an enhanced cell entrapment when compared to rapid prototyped scaffolds without nanofibers. Furthermore, upregulation of bone specific genes and calcium phosphate deposition confirms the successful osteogenic differentiation of hWJSCs on these scaffolds. These results support our hypothesis that a scaffold with hierarchical structure, in conjugation with hWJSCs, represents a possible feasible strategy for bone tissue engineering applications.
Idioma originalEnglish
Número do artigo035009
RevistaBiofabrication
Volume7
Número de emissão3
DOIs
Estado da publicaçãoPublicado - 3 set. 2015
Publicado externamenteSim

Impressão digital

Mergulhe nos tópicos de investigação de “Hierarchical scaffolds enhance osteogenic differentiation of human Wharton's jelly derived stem cells“. Em conjunto formam uma impressão digital única.

Citação