TY - JOUR
T1 - Instrumental and sensory approaches for the characterization of compounds responsible for wine aroma
AU - Barbe, Jean Christophe
AU - Pineau, Bénédicte
AU - Silva Ferreira, Antonio Cesar
PY - 2008
Y1 - 2008
N2 - More than 800 aromatic compounds have been identified in wine, some of them at the ng/l level. Wine, therefore, constitutes a very complex matrix, from which it is difficult to isolate a specific aroma character. Gas chromatography-olfactometry (GC-O) applied to wine extracts is used to characterize odor-active zones that are often treated in a hierarchical way by Aroma Extract Dilution Analysis (AEDA). The aromatic impact of the volatiles is evaluated, generally by determining perception thresholds. This methodology has provided convincing results concerning wine flavors, but it does have its limitations. For instance , data on β-damascenone have demonstrated that these methods could reach their limits for this volatile, in particular, because of the non-quantitative representation of aroma extracts of wines, and because of the difficulty to accurately determine the perception threshold in wines for a compound already present. For β-damascenone, we have shown that its very low detection threshold with GC-O, its wide range, and its dependence on the composition of the medium resulted in overestimating its direct impact on the aroma of wine. Another way to facilitate the characterization of aromatic compounds was, therefore, investigated. High-Performance Liquid Chromatography (HPLC) methods were developed for the analysis of wine extracts. From an aromatic extract, 25 fractions with various flavors were thus obtained, and reverse-phase methodology was used for the selection and characterization of red- and black-fruit aromas in red wines.
AB - More than 800 aromatic compounds have been identified in wine, some of them at the ng/l level. Wine, therefore, constitutes a very complex matrix, from which it is difficult to isolate a specific aroma character. Gas chromatography-olfactometry (GC-O) applied to wine extracts is used to characterize odor-active zones that are often treated in a hierarchical way by Aroma Extract Dilution Analysis (AEDA). The aromatic impact of the volatiles is evaluated, generally by determining perception thresholds. This methodology has provided convincing results concerning wine flavors, but it does have its limitations. For instance , data on β-damascenone have demonstrated that these methods could reach their limits for this volatile, in particular, because of the non-quantitative representation of aroma extracts of wines, and because of the difficulty to accurately determine the perception threshold in wines for a compound already present. For β-damascenone, we have shown that its very low detection threshold with GC-O, its wide range, and its dependence on the composition of the medium resulted in overestimating its direct impact on the aroma of wine. Another way to facilitate the characterization of aromatic compounds was, therefore, investigated. High-Performance Liquid Chromatography (HPLC) methods were developed for the analysis of wine extracts. From an aromatic extract, 25 fractions with various flavors were thus obtained, and reverse-phase methodology was used for the selection and characterization of red- and black-fruit aromas in red wines.
UR - http://www.scopus.com/inward/record.url?scp=52649101543&partnerID=8YFLogxK
U2 - 10.1002/cbdv.200890094
DO - 10.1002/cbdv.200890094
M3 - Article
C2 - 18618403
AN - SCOPUS:52649101543
SN - 1612-1872
VL - 5
SP - 1170
EP - 1183
JO - Chemistry and Biodiversity
JF - Chemistry and Biodiversity
IS - 6
ER -