Multifunctionality of rapeseed meal protein isolates prepared by sequential isoelectric precipitation

Radoslav Georgiev, Hristo Kalaydzhiev, Petya Ivanova, Cristina L. M. Silva, Vesela I. Chalova*

*Autor correspondente para este trabalho

Resultado de pesquisarevisão de pares

3 Citações (Scopus)
22 Transferências (Pure)


Rapeseed meal is a by-product of the oil-producing industry with a currently underesti-mated application. Two protein isolates, PI2.5–8.5 or PI10.5–2.5, were obtained from industrial rapeseed meal after treatment with an aqueous ethanol solution. The alkaline-extracted proteins were sequen-tially precipitated by two different modes, from pH 10.5 to 2.5, and vice versa, from 2.5 to 8.5, with a step of 1 pH unit. The preparation approach influenced both the functional and antioxidant properties of the isolates. The PI10.5–2.5 exhibited higher water and oil absorption capacities than PI2.5–8.5, reaching 2.68 g H2O/g sample and 2.36 g oil/g sample, respectively. The emulsion stability of the PI2.5–8.5, evaluated after heating at 80 °C, was either 100% or close to 100% for all pH values studied (from 2 to 10), except for pH 6 where it reached 93.87%. For the PI10.5–2.5, decreases in the emulsion stability were observed at pH 8 (85.71%) and pH 10 (53.15%). In the entire concentration range, the PI10.5–2.5 exhibited a higher scavenging ability on 2,2-diphenyl-1-picryl hydrazyl (DPPH) and hydroxyl radicals than PI2.5–8.5 as evaluated by DPPH and 2-deoxyribose assays, respectively. At the highest concentration studied, 1.0%, the neutralization of DPPH radicals by PI10.5–2 reached half of that exhibited by synthetic antioxidant butylhydroxytoluene (82.65%). At the same concentration, the inhibition of hydroxyl radicals by PI10.5–2 (71.25%) was close to that achieved by mannitol (75.62%), which was used as a positive control. Established antioxidant capacities add value to the protein isolates that can thus be used as both emulsifiers and antioxidants.
Idioma originalEnglish
Número do artigo541
Número de páginas14
Número de emissão4
Estado da publicaçãoPublicado - 1 fev. 2022

Impressão digital

Mergulhe nos tópicos de investigação de “Multifunctionality of rapeseed meal protein isolates prepared by sequential isoelectric precipitation“. Em conjunto formam uma impressão digital única.