Sir Pinski rides again

Maria Ivette Gomes, Dinis Pestana, Pedro Pestana

Resultado de pesquisarevisão de pares

Resumo

The iterative procedure of removing “almost everything” from a triangle ultimately leading to the Sierpinski's gasket S is well-known. But what is in fact left when almost everything has been taken out? Using the Sir Pinski's game described by Schroeder [4], we identify two dual sets of invariant points in this exquisite game, and from these we identify points left over in Sierpinski gasket. Our discussion also shows that the chaos game does not generate the Sierpinski gasket. It generates an approximation or, at most, a subset of S.
Idioma originalEnglish
Páginas137-144
Número de páginas8
Estado da publicaçãoPublished - 2019
Evento4th International Conference on Chaotic Modeling and Simulation, CHAOS 2011 - Agios Nikolaos, Crete
Duração: 31 mai 20113 jun 2011

Conferência

Conferência4th International Conference on Chaotic Modeling and Simulation, CHAOS 2011
País/TerritórioGreece
CidadeAgios Nikolaos, Crete
Período31/05/113/06/11

Impressão digital

Mergulhe nos tópicos de investigação de “Sir Pinski rides again“. Em conjunto formam uma impressão digital única.

Citação