TY - JOUR
T1 - Surface modification tailors the characteristics of biomimetic coatings nucleated on starch-based polymers
AU - Oliveira, A. L.
AU - Elvira, C.
AU - Reis, R. L.
AU - Vázquez, B.
AU - San Román, J.
N1 - Funding Information:
The authors are very grateful to Novamont, Italy and U. Aveiro, Portugal for kindly supplying materials used in this study. A. L. Oliveira also wishes to acknowledge the Financial Support from a EU Leonardo da Vinci grant.
PY - 1999
Y1 - 1999
N2 - This work describes the influence of surface pretreatments over the nucleation and growth of an apatite layer, formed by a biomimetic process, on which a bioactive glass is used as a precursor of the calcium-phosphate (Ca-P) formation on the materials surface. SEVA-C, a corn starch-based biodegradable blend, was used as substrate. The surfaces were pretreated during various periods by: (i) physical methods, namely ultraviolet radiation (u.v.), and over exposure to ethylene oxide sterilization (EtO); and (ii) chemical methods, namely potassium hydroxide (KOH) and acetic anhydride (CH3CO)2 etchings. The surface modifications, performed before the production of the biomimetic coatings, resulted in a faster formation of Ca-P nuclei during the first stages of SBF immersion, particularly in the case of the KOH etching. In this case, it was possible to observe a decrease in the average surface roughness, as measured by laser profilometry, and an increase of the hydrophilicity of the material, which was evident from a clear increment in the water-uptake ability and quantified by contact angle measurements. With this treatment it was possible not only to reduce the induction period for the formation of a well defined and dense apatite-like layer, as observed by scanning electron microscopy (SEM), but also to improve the adhesion of the Ca-P layer to the substrate, as confirmed by the adhesion strength tests. For all the studied pre-treatments, the composition of the films, analyzed by energy dispersive spectroscopy (EDS) and identified by thin-film X-ray diffraction (TF-XRD), seems to be very similar to that of human bone apatites.
AB - This work describes the influence of surface pretreatments over the nucleation and growth of an apatite layer, formed by a biomimetic process, on which a bioactive glass is used as a precursor of the calcium-phosphate (Ca-P) formation on the materials surface. SEVA-C, a corn starch-based biodegradable blend, was used as substrate. The surfaces were pretreated during various periods by: (i) physical methods, namely ultraviolet radiation (u.v.), and over exposure to ethylene oxide sterilization (EtO); and (ii) chemical methods, namely potassium hydroxide (KOH) and acetic anhydride (CH3CO)2 etchings. The surface modifications, performed before the production of the biomimetic coatings, resulted in a faster formation of Ca-P nuclei during the first stages of SBF immersion, particularly in the case of the KOH etching. In this case, it was possible to observe a decrease in the average surface roughness, as measured by laser profilometry, and an increase of the hydrophilicity of the material, which was evident from a clear increment in the water-uptake ability and quantified by contact angle measurements. With this treatment it was possible not only to reduce the induction period for the formation of a well defined and dense apatite-like layer, as observed by scanning electron microscopy (SEM), but also to improve the adhesion of the Ca-P layer to the substrate, as confirmed by the adhesion strength tests. For all the studied pre-treatments, the composition of the films, analyzed by energy dispersive spectroscopy (EDS) and identified by thin-film X-ray diffraction (TF-XRD), seems to be very similar to that of human bone apatites.
UR - http://www.scopus.com/inward/record.url?scp=0033379364&partnerID=8YFLogxK
U2 - 10.1023/A:1008900428325
DO - 10.1023/A:1008900428325
M3 - Article
C2 - 15347960
AN - SCOPUS:0033379364
SN - 0957-4530
VL - 10
SP - 827
EP - 835
JO - Journal of Materials Science: Materials in Medicine
JF - Journal of Materials Science: Materials in Medicine
IS - 12
ER -