TY - JOUR
T1 - The metabolic, virulence and antimicrobial resistance profiles of colonising Streptococcus pneumoniae shift after PCV13 introduction in urban Malawi
AU - Obolski, Uri
AU - Swarthout, Todd D.
AU - Kalizang’oma, Akuzike
AU - Mwalukomo, Thandie S.
AU - Chan, Jia Mun
AU - Weight, Caroline M.
AU - Brown, Comfort
AU - Cave, Rory
AU - Cornick, Jen
AU - Kamng’ona, Arox Wadson
AU - Msefula, Jacquline
AU - Ercoli, Giuseppe
AU - Brown, Jeremy S.
AU - Lourenço, José
AU - Maiden, Martin C.
AU - French, Neil
AU - Gupta, Sunetra
AU - Heyderman, Robert S.
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/12
Y1 - 2023/12
N2 - Streptococcus pneumoniae causes substantial mortality among children under 5-years-old worldwide. Polysaccharide conjugate vaccines (PCVs) are highly effective at reducing vaccine serotype disease, but emergence of non-vaccine serotypes and persistent nasopharyngeal carriage threaten this success. We investigated the hypothesis that following vaccine, adapted pneumococcal genotypes emerge with the potential for vaccine escape. We genome sequenced 2804 penumococcal isolates, collected 4-8 years after introduction of PCV13 in Blantyre, Malawi. We developed a pipeline to cluster the pneumococcal population based on metabolic core genes into “Metabolic genotypes” (MTs). We show that S. pneumoniae population genetics are characterised by emergence of MTs with distinct virulence and antimicrobial resistance (AMR) profiles. Preliminary in vitro and murine experiments revealed that representative isolates from emerging MTs differed in growth, haemolytic, epithelial infection, and murine colonisation characteristics. Our results suggest that in the context of PCV13 introduction, pneumococcal population dynamics had shifted, a phenomenon that could further undermine vaccine control and promote spread of AMR.
AB - Streptococcus pneumoniae causes substantial mortality among children under 5-years-old worldwide. Polysaccharide conjugate vaccines (PCVs) are highly effective at reducing vaccine serotype disease, but emergence of non-vaccine serotypes and persistent nasopharyngeal carriage threaten this success. We investigated the hypothesis that following vaccine, adapted pneumococcal genotypes emerge with the potential for vaccine escape. We genome sequenced 2804 penumococcal isolates, collected 4-8 years after introduction of PCV13 in Blantyre, Malawi. We developed a pipeline to cluster the pneumococcal population based on metabolic core genes into “Metabolic genotypes” (MTs). We show that S. pneumoniae population genetics are characterised by emergence of MTs with distinct virulence and antimicrobial resistance (AMR) profiles. Preliminary in vitro and murine experiments revealed that representative isolates from emerging MTs differed in growth, haemolytic, epithelial infection, and murine colonisation characteristics. Our results suggest that in the context of PCV13 introduction, pneumococcal population dynamics had shifted, a phenomenon that could further undermine vaccine control and promote spread of AMR.
UR - http://www.scopus.com/inward/record.url?scp=85176930402&partnerID=8YFLogxK
U2 - 10.1038/s41467-023-43160-y
DO - 10.1038/s41467-023-43160-y
M3 - Article
C2 - 37978177
AN - SCOPUS:85176930402
SN - 2041-1723
VL - 14
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 7477
ER -