Training strategies for Covid-19 severity classification

Daniel Pordeus*, Pedro Ribeiro, Laíla Zacarias, Adriel de Oliveira, João Alexandre Lobo Marques, Pedro Miguel Rodrigues, Camila Leite, Manoel Alves Neto, Arnaldo Aires Peixoto, João Paulo do Vale Madeiro

*Autor correspondente para este trabalho

Resultado de pesquisarevisão de pares

Resumo

The COVID-19 pandemic has posed a significant public health challenge on a global scale. It is imperative that we continue to undertake research in order to identify early markers of disease progression, enhance patient care through prompt diagnosis, identification of high-risk patients, early prevention, and efficient allocation of medical resources. In this particular study, we obtained 100 5-min electrocardiograms (ECGs) from 50 COVID-19 volunteers in two different positions, namely upright and supine, who were categorized as either moderately or critically ill. We used classification algorithms to analyze heart rate variability (HRV) metrics derived from the ECGs of the volunteers with the goal of predicting the severity of illness. Our study choose a configuration pro SVC that achieved 76% of accuracy, and 0.84 on F1 Score in predicting the severity of Covid-19 based on HRV metrics.
Idioma originalEnglish
Título da publicação do anfitriãoBioinformatics and Biomedical Engineering
Subtítulo da publicação do anfitrião10th International Work-Conference, IWBBIO 2023, Proceedings
EditoresIgnacio Rojas, Olga Valenzuela, Fernando Rojas Ruiz, Luis Javier Herrera, Francisco Ortuño
EditoraSpringer Science and Business Media Deutschland GmbH
Páginas514-527
Número de páginas14
ISBN (impresso)9783031349522
DOIs
Estado da publicaçãoPublicado - jun. 2023
Evento10th International Work-Conference on Bioinformatics and Biomedical Engineering, IWBBIO 2023 - Meloneras
Duração: 12 jul. 202314 jul. 2023

Série de publicação

NomeLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13919 LNBI
ISSN (impresso)0302-9743
ISSN (eletrónico)1611-3349

Conferência

Conferência10th International Work-Conference on Bioinformatics and Biomedical Engineering, IWBBIO 2023
País/TerritórioSpain
CidadeMeloneras
Período12/07/2314/07/23

Impressão digital

Mergulhe nos tópicos de investigação de “Training strategies for Covid-19 severity classification“. Em conjunto formam uma impressão digital única.

Citação